These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38163246)

  • 1. Forecasting value-at-risk of crude oil futures using a hybrid ARIMA-SVR-POT model.
    Zhang C; Zhou X
    Heliyon; 2024 Jan; 10(1):e23358. PubMed ID: 38163246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a hybrid ARIMA-LSTM model based on the SPEI for drought forecasting.
    Xu D; Zhang Q; Ding Y; Zhang D
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):4128-4144. PubMed ID: 34403057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Daily air quality index forecasting with hybrid models: A case in China.
    Zhu S; Lian X; Liu H; Hu J; Wang Y; Che J
    Environ Pollut; 2017 Dec; 231(Pt 2):1232-1244. PubMed ID: 28939124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CEEMD-ARIMA-SVM model with structural breaks to forecast the crude oil prices linked with extreme events.
    Cheng Y; Yi J; Yang X; Lai KK; Seco L
    Soft comput; 2022; 26(17):8537-8551. PubMed ID: 35818583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Point and interval prediction of crude oil futures prices based on chaos theory and multiobjective slime mold algorithm.
    Sun W; Chen H; Liu F; Wang Y
    Ann Oper Res; 2022 Jun; ():1-31. PubMed ID: 35755829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relationship between Crude Oil Futures Market and Chinese/US Stock Index Futures Market Based on Breakpoint Test.
    Lu X; Liu K; Lai KK; Cui H
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating Russo-Ukrainian war in Brent crude oil price forecasting: A comparative analysis of ARIMA, TARMA and ENNReg models.
    Mati S; Radulescu M; Saqib N; Samour A; Ismael GY; Aliyu N
    Heliyon; 2023 Nov; 9(11):e21439. PubMed ID: 38027671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.
    Alwee R; Shamsuddin SM; Sallehuddin R
    ScientificWorldJournal; 2013; 2013():951475. PubMed ID: 23766729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Hybrid Wavelet-Locally Weighted Linear Regression (W-LWLR) Model for Electrical Conductivity (EC) Prediction in Surface Water.
    Ahmadianfar I; Jamei M; Chu X
    J Contam Hydrol; 2020 Jun; 232():103641. PubMed ID: 32408076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crude oil prices and volatility prediction by a hybrid model based on kernel extreme learning machine.
    Niu H; Zhao Y
    Math Biosci Eng; 2021 Sep; 18(6):8096-8122. PubMed ID: 34814291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.
    Shabri A; Samsudin R
    ScientificWorldJournal; 2014; 2014():854520. PubMed ID: 24895666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic.
    Weng F; Zhang H; Yang C
    Resour Policy; 2021 Oct; 73():102148. PubMed ID: 34539033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying dynamic risk spillovers between crude oil and downstream industries: China's futures market perspective.
    Hao Y; Liu H; Wang X; Liu J
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):21089-21106. PubMed ID: 38379046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices.
    Wang L; Xia Y; Lu Y
    Comput Intell Neurosci; 2022; 2022():4952215. PubMed ID: 36045986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of crude oil market on global economy: Evidence from the Ukraine-Russia conflict via fuzzy models.
    Bilal M; Aamir M; Abdullah S; Khan F
    Heliyon; 2024 Jan; 10(1):e23874. PubMed ID: 38223738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models.
    Adeyinka DA; Muhajarine N
    BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting carbon emissions future prices using the machine learning methods.
    Shahzad U; Sengupta T; Rao A; Cui L
    Ann Oper Res; 2023 Feb; ():1-32. PubMed ID: 36777411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population.
    Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J
    Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707
    [No Abstract]   [Full Text] [Related]  

  • 19. Modelling monthly influenza cases in Malaysia.
    Norrulashikin MA; Yusof F; Hanafiah NHM; Norrulashikin SM
    PLoS One; 2021; 16(7):e0254137. PubMed ID: 34288925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying Hybrid ARIMA-SGARCH in Algorithmic Investment Strategies on S&P500 Index.
    Vo N; ƚlepaczuk R
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.