BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38163315)

  • 1. Semi-Infinitely Constrained Markov Decision Processes and Provably Efficient Reinforcement Learning.
    Zhang L; Peng Y; Yang W; Zhang Z
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):3722-3735. PubMed ID: 38163315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Gradient-Aware Search Algorithm for Constrained Markov Decision Processes.
    Khairy S; Balaprakash P; Cai LX
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37773894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CVaR-Constrained Policy Optimization for Safe Reinforcement Learning.
    Zhang Q; Leng S; Ma X; Liu Q; Wang X; Liang B; Liu Y; Yang J
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38393836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Constrained Optimization Methods in Health Services Research: Report 2 of the ISPOR Optimization Methods Emerging Good Practices Task Force.
    Crown W; Buyukkaramikli N; Sir MY; Thokala P; Morton A; Marshall DA; Tosh JC; Ijzerman MJ; Padula WV; Pasupathy KS
    Value Health; 2018 Sep; 21(9):1019-1028. PubMed ID: 30224103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Temporal Difference Learning With Linear Function Approximation.
    Sun T; Shen H; Chen T; Li D
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):8812-8824. PubMed ID: 34648431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immediate-return reinforcement learning for the atypical Markov decision processes.
    Pan Z; Wen G; Tan Z; Yin S; Hu X
    Front Neurorobot; 2022; 16():1012427. PubMed ID: 36582302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast reinforcement learning with generalized policy updates.
    Barreto A; Hou S; Borsa D; Silver D; Precup D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30079-30087. PubMed ID: 32817541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning to maximize reward rate: a model based on semi-Markov decision processes.
    Khodadadi A; Fakhari P; Busemeyer JR
    Front Neurosci; 2014; 8():101. PubMed ID: 24904252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling Up Q-Learning via Exploiting State-Action Equivalence.
    Lyu Y; Côme A; Zhang Y; Talebi MS
    Entropy (Basel); 2023 Mar; 25(4):. PubMed ID: 37190372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of anemia treatment in hemodialysis patients via reinforcement learning.
    Escandell-Montero P; Chermisi M; Martínez-Martínez JM; Gómez-Sanchis J; Barbieri C; Soria-Olivas E; Mari F; Vila-Francés J; Stopper A; Gatti E; Martín-Guerrero JD
    Artif Intell Med; 2014 Sep; 62(1):47-60. PubMed ID: 25091172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition of web services using Markov decision processes and dynamic programming.
    Uc-Cetina V; Moo-Mena F; Hernandez-Ucan R
    ScientificWorldJournal; 2015; 2015():545308. PubMed ID: 25874247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. D2D-Assisted Multi-User Cooperative Partial Offloading in MEC Based on Deep Reinforcement Learning.
    Guan X; Lv T; Lin Z; Huang P; Zeng J
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid constrained coral reefs optimization algorithm with machine learning for optimizing multi-reservoir systems operation.
    Emami M; Nazif S; Mousavi SF; Karami H; Daccache A
    J Environ Manage; 2021 May; 286():112250. PubMed ID: 33752153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Teleconsultation dynamic scheduling with a deep reinforcement learning approach.
    Chen W; Li J
    Artif Intell Med; 2024 Mar; 149():102806. PubMed ID: 38462294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on reinforcement learning-based safe decision-making methodology for multiple unmanned aerial vehicles.
    Yue L; Yang R; Zhang Y; Zuo J
    Front Neurorobot; 2022; 16():1105480. PubMed ID: 36704719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning.
    Yuan R; Dou J; Li J; Wang W; Jiang Y
    Math Biosci Eng; 2023 Jan; 20(2):1903-1918. PubMed ID: 36899514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From deterministic to stochastic: an interpretable stochastic model-free reinforcement learning framework for portfolio optimization.
    Song Z; Wang Y; Qian P; Song S; Coenen F; Jiang Z; Su J
    Appl Intell (Dordr); 2023; 53(12):15188-15203. PubMed ID: 36405345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous reinforcement learning with experience replay.
    Wawrzyński P; Tanwani AK
    Neural Netw; 2013 May; 41():156-67. PubMed ID: 23237972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.