These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38163360)

  • 1. Combined use of 3D printing and mixed reality technology for neurosurgical training: getting ready for brain surgery.
    Jeising S; Liu S; Blaszczyk T; Rapp M; Beez T; Cornelius JF; Schwerter M; Sabel M
    Neurosurg Focus; 2024 Jan; 56(1):E12. PubMed ID: 38163360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training.
    Grosch AS; Schröder T; Schröder T; Onken J; Picht T
    Acta Neurochir (Wien); 2020 Aug; 162(8):1957-1965. PubMed ID: 32385637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application effect of head-mounted mixed reality device combined with 3D printing model in neurosurgery ventricular and hematoma puncture training.
    Peng Y; Xie Z; Chen S; Wu Y; Dong J; Li J; He J; Chen X; Gao H
    BMC Med Educ; 2023 Sep; 23(1):670. PubMed ID: 37723452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed Reality Combined with Three-Dimensional Printing Technology in Total Hip Arthroplasty: An Updated Review with a Preliminary Case Presentation.
    Lei PF; Su SL; Kong LY; Wang CG; Zhong D; Hu YH
    Orthop Surg; 2019 Oct; 11(5):914-920. PubMed ID: 31663276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of a synthetic 3D-printed simulator for training in neuroendoscopic ventricular lesion removal.
    Licci M; Thieringer FM; Guzman R; Soleman J
    Neurosurg Focus; 2020 Mar; 48(3):E18. PubMed ID: 32114554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrative review of patient-specific 3D visualization and reality technologies in skull base neurosurgery: enhancements in surgical training, planning, and navigation.
    Isikay I; Cekic E; Baylarov B; Tunc O; Hanalioglu S
    Front Surg; 2024; 11():1427844. PubMed ID: 39081485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery.
    Coelho G; Rabelo NN; Vieira E; Mendes K; Zagatto G; Santos de Oliveira R; Raposo-Amaral CE; Yoshida M; de Souza MR; Fagundes CF; Teixeira MJ; Figueiredo EG
    Neurosurg Focus; 2020 Mar; 48(3):E19. PubMed ID: 32114555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed reality navigation training system for liver surgery based on a high-definition human cross-sectional anatomy data set.
    Shahbaz M; Miao H; Farhaj Z; Gong X; Weikai S; Dong W; Jun N; Shuwei L; Yu D
    Cancer Med; 2023 Apr; 12(7):7992-8004. PubMed ID: 36607128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usability of mixed reality in awake craniotomy planning.
    Moon RDC; Barua NU
    Br J Neurosurg; 2024 Oct; 38(5):1139-1143. PubMed ID: 36537230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A patient-specific, interactive, multiuser, online mixed-reality neurosurgical training and planning system.
    Wang J; Zhao Y; Xu X; Wang Q; Li F; Zhang S; Gan Z; Xiong R; Zhang J; Chen X
    Neurosurg Focus; 2024 Jan; 56(1):E15. PubMed ID: 38163359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomic Review in 3D Augmented Reality Alters Craniotomy Planning Among Residents.
    Haider S; Air E; Kou Z; Rock J
    World Neurosurg; 2024 Apr; 184():e524-e529. PubMed ID: 38325703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printing of Diffuse Low-Grade Gliomas Involving Eloquent Cortical Areas and Subcortical Functional Pathways: Technical Note.
    Gomez-Feria J; Narros JL; Ciriza GG; Roldan-Lora F; Schrader IM; Martin-Rodríguez JF; Mir P
    World Neurosurg; 2021 Mar; 147():164-171.e4. PubMed ID: 33359517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigating the calvaria with mobile mixed reality-based neurosurgical planning: how feasible are smartphone applications as a craniotomy guide?
    Dogan I; Eray HA; Ozgural O; Tekneci O; Hasimoglu S; Terzi M; Mete EB; Kuzukiran YC; Elmas H; Orhan O; Abbasoglu B; Bayatli E; Zaimoglu M; Caglar S
    Neurosurg Focus; 2024 Jan; 56(1):E4. PubMed ID: 38163350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of mixed reality technique for the surgery of oral and maxillofacial tumors].
    Tang ZN; Hui Y; Hu LH; Yu Y; Zhang WB; Peng X
    Beijing Da Xue Xue Bao Yi Xue Ban; 2020 Dec; 52(6):1124-1129. PubMed ID: 33331325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man's neuronavigation.
    Gosal JS; Tiwari S; Sharma T; Agrawal M; Garg M; Mahal S; Bhaskar S; Sharma RK; Janu V; Jha DK
    Neurosurg Focus; 2021 Aug; 51(2):E23. PubMed ID: 34333461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of augmented-reality based navigation for brain tumor surgery.
    Satoh M; Nakajima T; Yamaguchi T; Watanabe E; Kawai K
    J Clin Neurosci; 2021 Dec; 94():305-314. PubMed ID: 34863455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear implant surgery: Learning curve in virtual reality simulation training and transfer of skills to a 3D-printed temporal bone - A prospective trial.
    Frendø M; Frithioff A; Konge L; Sørensen MS; Andersen SAW
    Cochlear Implants Int; 2021 Nov; 22(6):330-337. PubMed ID: 34151753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open LEARN: Open access linear accelerator education and augmented reality Navigator.
    Basran PS; Ho Synn S; Marzano GA; Maeng H; Lotfi-Jam F
    Phys Med; 2024 Oct; 126():104515. PubMed ID: 39276724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing.
    Goo HW; Park SJ; Yoo SJ
    Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.