BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 38163641)

  • 1. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus.
    Yang SY; Lin WY; Hsiao YM; Chiou TJ
    Plant Cell; 2024 May; 36(5):1504-1523. PubMed ID: 38163641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants.
    Prathap V; Kumar A; Maheshwari C; Tyagi A
    Mol Biol Rep; 2022 Aug; 49(8):8071-8086. PubMed ID: 35318578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in research on phosphate starvation signaling in plants.
    Puga MI; Poza-Carrión C; Martinez-Hevia I; Perez-Liens L; Paz-Ares J
    J Plant Res; 2024 May; 137(3):315-330. PubMed ID: 38668956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of plant immunity and biotic interactions under phosphate deficiency.
    Inoue K; Tsuchida N; Saijo Y
    J Plant Res; 2024 May; 137(3):343-357. PubMed ID: 38693461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into plant phosphate sensing and signaling.
    Ham BK; Chen J; Yan Y; Lucas WJ
    Curr Opin Biotechnol; 2018 Feb; 49():1-9. PubMed ID: 28732264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of root architecture development to low phosphorus availability: a review.
    Niu YF; Chai RS; Jin GL; Wang H; Tang CX; Zhang YS
    Ann Bot; 2013 Jul; 112(2):391-408. PubMed ID: 23267006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved.
    Ferrol N; Azcón-Aguilar C; Pérez-Tienda J
    Plant Sci; 2019 Mar; 280():441-447. PubMed ID: 30824024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbe-dependent and independent nitrogen and phosphate acquisition and regulation in plants.
    Zhao B; Jia X; Yu N; Murray JD; Yi K; Wang E
    New Phytol; 2024 May; 242(4):1507-1522. PubMed ID: 37715479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypes and Molecular Mechanisms Underlying the Root Response to Phosphate Deprivation in Plants.
    Ren M; Li Y; Zhu J; Zhao K; Wu Z; Mao C
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Signaling network in sensing phosphate availability in plants.
    Chiou TJ; Lin SI
    Annu Rev Plant Biol; 2011; 62():185-206. PubMed ID: 21370979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate starvation: response mechanisms and solutions.
    Madison I; Gillan L; Peace J; Gabrieli F; Van den Broeck L; Jones JL; Sozzani R
    J Exp Bot; 2023 Nov; 74(21):6417-6430. PubMed ID: 37611151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual role of strigolactones in phosphate acquisition and utilization in plants.
    Czarnecki O; Yang J; Weston DJ; Tuskan GA; Chen JG
    Int J Mol Sci; 2013 Apr; 14(4):7681-701. PubMed ID: 23612324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short on phosphate: plant surveillance and countermeasures.
    Ticconi CA; Abel S
    Trends Plant Sci; 2004 Nov; 9(11):548-55. PubMed ID: 15501180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new insight into root responses to external cues: Paradigm shift in nutrient sensing.
    Bhardwaj D; Medici A; Gojon A; Lacombe B; Tuteja N
    Plant Signal Behav; 2015; 10(12):e1049791. PubMed ID: 26146897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.
    Anawar HM; Rengel Z; Damon P; Tibbett M
    Environ Pollut; 2018 Feb; 233():1003-1012. PubMed ID: 29033177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.
    Nath M; Tuteja N
    Protoplasma; 2016 May; 253(3):767-786. PubMed ID: 26085375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice.
    Kun Yuan ; Zhang H; Yu C; Luo N; Yan J; Zheng S; Hu Q; Zhang D; Kou L; Meng X; Jing Y; Chen M; Ban X; Yan Z; Lu Z; Wu J; Zhao Y; Liang Y; Wang Y; Xiong G; Chu J; Wang E; Li J; Wang B
    Mol Plant; 2023 Nov; 16(11):1811-1831. PubMed ID: 37794682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.
    Zhang Z; Liao H; Lucas WJ
    J Integr Plant Biol; 2014 Mar; 56(3):192-220. PubMed ID: 24417933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.