These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38163727)

  • 1. Potential bioactive peptides obtained after in vitro gastrointestinal digestion of wine lees from sequential fermentations.
    Moreira LPD; Corich V; Jørgensen EG; Devold TG; Nadai C; Giacomini A; Porcellato D
    Food Res Int; 2024 Jan; 176():113833. PubMed ID: 38163727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation.
    Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines.
    Nisiotou A; Sgouros G; Mallouchos A; Nisiotis CS; Michaelidis C; Tassou C; Banilas G
    Food Res Int; 2018 Sep; 111():498-508. PubMed ID: 30007712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae-Starmerella bacillaris strains interaction modulates chemical and volatile profile in red wine mixed fermentations.
    Englezos V; Pollon M; Rantsiou K; Ortiz-Julien A; Botto R; Río Segade S; Giacosa S; Rolle L; Cocolin L
    Food Res Int; 2019 Aug; 122():392-401. PubMed ID: 31229092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Starmerella bacillaris and Zygosaccharomyces bailii on ethanol reduction and Saccharomyces cerevisiae metabolism during mixed wine fermentations.
    Capece A; Pietrafesa A; Pietrafesa R; Garrigós V; Tedesco F; Romano P; Matallana E; Siesto G; Aranda A
    Food Res Int; 2022 Sep; 159():111649. PubMed ID: 35940817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on management of malolactic fermentation.
    Russo P; Englezos V; Capozzi V; Pollon M; Río Segade S; Rantsiou K; Spano G; Cocolin L
    Food Res Int; 2020 Aug; 134():109246. PubMed ID: 32517918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole genome comparison of two Starmerella bacillaris strains with other wine yeasts uncovers genes involved in modulating important winemaking traits.
    Lemos Junior WJF; da Silva Duarte V; Treu L; Campanaro S; Nadai C; Giacomini A; Corich V
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29961804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen availability and strain combination modulate yeast growth dynamics in mixed culture fermentations of grape must with Starmerella bacillaris and Saccharomyces cerevisiae.
    Englezos V; Cravero F; Torchio F; Rantsiou K; Ortiz-Julien A; Lambri M; Gerbi V; Rolle L; Cocolin L
    Food Microbiol; 2018 Feb; 69():179-188. PubMed ID: 28941899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oenological characteristics of two indigenous Starmerella bacillaris strains isolated from Chinese wine regions.
    Li R; Liu Y; Zheng J; Xu M; Wang H; Sun C; Cai S; Guo X; Wu X; Chen Y
    Appl Microbiol Biotechnol; 2023 Jun; 107(11):3717-3727. PubMed ID: 37097503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starmerella bacillaris and Saccharomyces cerevisiae mixed fermentations to reduce ethanol content in wine.
    Englezos V; Rantsiou K; Cravero F; Torchio F; Ortiz-Julien A; Gerbi V; Rolle L; Cocolin L
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5515-26. PubMed ID: 26960321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploitation of the non-Saccharomyces yeast Starmerella bacillaris (synonym Candida zemplinina) in wine fermentation: physiological and molecular characterizations.
    Englezos V; Rantsiou K; Torchio F; Rolle L; Gerbi V; Cocolin L
    Int J Food Microbiol; 2015 Apr; 199():33-40. PubMed ID: 25625909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survey of the yeast ecology of dehydrated grapes and strain selection for wine fermentation.
    Serafino G; Di Gianvito P; Giacosa S; Škrab D; Cocolin L; Englezos V; Rantsiou K
    Food Res Int; 2023 Aug; 170():113005. PubMed ID: 37316074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of sequential inoculum of Starmerella bacillaris and Saccharomyces cerevisiae on flavonoid composition of monovarietal Sangiovese wines.
    Mangani S; Buscioni G; Guerrini S; Granchi L
    Yeast; 2020 Sep; 37(9-10):549-557. PubMed ID: 32410256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of High Sugar Content on Fermentation Dynamics and Some Metabolites of Wine-Related Yeast Species
    Horváth BO; Sárdy DN; Kellner N; Magyar I
    Food Technol Biotechnol; 2020 Mar; 58(1):76-83. PubMed ID: 32684791
    [No Abstract]   [Full Text] [Related]  

  • 15. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy.
    Binati RL; Lemos Junior WJF; Luzzini G; Slaghenaufi D; Ugliano M; Torriani S
    Int J Food Microbiol; 2020 Apr; 318():108470. PubMed ID: 31841784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Indigenous Non-
    Castrillo D; Blanco P
    Front Biosci (Elite Ed); 2023 Jan; 15(1):1. PubMed ID: 36959102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Saccharomyces cerevisiae and non-Saccharomyces yeasts to improve traditional sparkling wines production.
    Tofalo R; Perpetuini G; Rossetti AP; Gaggiotti S; Piva A; Olivastri L; Cichelli A; Compagnone D; Arfelli G
    Food Microbiol; 2022 Dec; 108():104097. PubMed ID: 36088113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential use of Starmerella bacillaris as fermentation starter for the production of low-alcohol beverages obtained from unripe grapes.
    Lemos Junior WJF; Nadai C; Crepalde LT; de Oliveira VS; de Matos AD; Giacomini A; Corich V
    Int J Food Microbiol; 2019 Aug; 303():1-8. PubMed ID: 31102962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Color Stabilization of Apulian Red Wines through the Sequential Inoculation of
    Velenosi M; Crupi P; Perniola R; Marsico AD; Salerno A; Alexandre H; Archidiacono N; Ventura M; Cardone MF
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33572140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of MALDI-TOF analysis to reveal diversity and dynamics of winemaking yeast species in wild-fermented, organically produced, New Zealand Pinot Noir wine.
    Zhang J; Plowman JE; Tian B; Clerens S; On SLW
    Food Microbiol; 2021 Oct; 99():103824. PubMed ID: 34119109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.