BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38164249)

  • 1. Lipid modulation contributes to heat stress adaptation in peanut.
    Spivey WW; Rustgi S; Welti R; Roth MR; Burow MD; Bridges WC; Narayanan S
    Front Plant Sci; 2023; 14():1299371. PubMed ID: 38164249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat stress elicits remodeling in the anther lipidome of peanut.
    Zoong Lwe ZS; Welti R; Anco D; Naveed S; Rustgi S; Narayanan S
    Sci Rep; 2020 Dec; 10(1):22163. PubMed ID: 33335149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.
    Narayanan S; Tamura PJ; Roth MR; Prasad PV; Welti R
    Plant Cell Environ; 2016 Apr; 39(4):787-803. PubMed ID: 26436679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeoviscous Adaptation of the Lipid Membrane of a Soil Bacterium Surviving under Diurnal Temperature Variation: A Molecular Simulation Perspective.
    Erimban S; Daschakraborty S
    J Phys Chem B; 2022 Oct; 126(39):7638-7650. PubMed ID: 36166758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress.
    Zoong Lwe Z; Sah S; Persaud L; Li J; Gao W; Raja Reddy K; Narayanan S
    BMC Plant Biol; 2021 Sep; 21(1):404. PubMed ID: 34488625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Advanced Lipid Metabolism System Revealed by Transcriptomic and Lipidomic Analyses Plays a Central Role in Peanut Cold Tolerance.
    Zhang H; Jiang C; Ren J; Dong J; Shi X; Zhao X; Wang X; Wang J; Zhong C; Zhao S; Liu X; Gao S; Yu H
    Front Plant Sci; 2020; 11():1110. PubMed ID: 32849684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rearing Temperature and Fatty Acid Supplementation Jointly Affect Lipid Fluorescence Polarization and Heat Tolerance in
    Martin-Creuzburg D; Coggins BL; Ebert D; Yampolsky LY
    Physiol Biochem Zool; 2019; 92(4):408-418. PubMed ID: 31180800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Lipidomic Analysis Reveals Heat Stress Responses of Two Soybean Genotypes Differing in Temperature Sensitivity.
    Narayanan S; Zoong-Lwe ZS; Gandhi N; Welti R; Fallen B; Smith JR; Rustgi S
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32260392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf Lipid Alterations in Response to Heat Stress of
    Shiva S; Samarakoon T; Lowe KA; Roach C; Vu HS; Colter M; Porras H; Hwang C; Roth MR; Tamura P; Li M; Schrick K; Shah J; Wang X; Wang H; Welti R
    Plants (Basel); 2020 Jul; 9(7):. PubMed ID: 32635518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling.
    Chwastek G; Surma MA; Rizk S; Grosser D; Lavrynenko O; Rucińska M; Jambor H; Sáenz J
    Cell Rep; 2020 Sep; 32(12):108165. PubMed ID: 32966790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.
    Laczkó-Dobos H; Szalontai B
    Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acid alteration of plastidic and extra-plastidic membrane lipids in metribuzin-resistant photoautotrophic Chenopodium rubrum cells as compared to wild-type cells.
    Schwenger-Erger C; Barz W; Weber N
    Z Naturforsch C J Biosci; 2001; 56(11-12):1047-56. PubMed ID: 11837657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene identification and functional characterization of a Δ12 fatty acid desaturase in Tetrahymena thermophila and its influence in homeoviscous adaptation to low temperature.
    Sanchez Granel ML; Cánepa C; Cid NG; Navarro JC; Monroig Ó; Verstraeten SV; Nudel CB; Nusblat AD
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Nov; 1864(11):1644-1655. PubMed ID: 31421180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeoviscous Adaptation and the Regulation of Membrane Lipids.
    Ernst R; Ejsing CS; Antonny B
    J Mol Biol; 2016 Dec; 428(24 Pt A):4776-4791. PubMed ID: 27534816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid remodeling of the soil lipidome in response to a drying-rewetting event.
    Couvillion SP; Danczak RE; Naylor D; Smith ML; Stratton KG; Paurus VL; Bloodsworth KJ; Farris Y; Schmidt DJ; Richardson RE; Bramer LM; Fansler SJ; Nakayasu ES; McDermott JE; Metz TO; Lipton MS; Jansson JK; Hofmockel KS
    Microbiome; 2023 Feb; 11(1):34. PubMed ID: 36849975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress.
    Herrera CM; Voss BJ; Trent MS
    mBio; 2021 Aug; 12(4):e0129521. PubMed ID: 34425709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in wheat pollen lipidome during high day and night temperature stress.
    Narayanan S; Prasad PVV; Welti R
    Plant Cell Environ; 2018 Aug; 41(8):1749-1761. PubMed ID: 29377219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCB-153 and temperature cause restructuring of goldfish membranes: homeoviscous response to a chemical fluidiser.
    Gonzalez A; Odjélé A; Weber JM
    Aquat Toxicol; 2013 Nov; 144-145():11-8. PubMed ID: 24121159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryostabilization of the Cell Membrane of a Psychrotolerant Bacteria via Homeoviscous Adaptation.
    Erimban S; Daschakraborty S
    J Phys Chem Lett; 2020 Sep; 11(18):7709-7716. PubMed ID: 32840376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insect cold-tolerance and lipidome: Membrane lipid composition of two chironomid species differently adapted to cold.
    Trenti F; Sandron T; Guella G; Lencioni V
    Cryobiology; 2022 Jun; 106():84-90. PubMed ID: 35317992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.