BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38164610)

  • 1. Characterization of the distribution and dynamics of chromatin states in the
    Mazzetto M; Gonzalez LE; Sanchez N; Reinke V
    Genome Res; 2024 Feb; 34(1):57-69. PubMed ID: 38164610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells.
    Arico JK; Katz DJ; van der Vlag J; Kelly WG
    PLoS Genet; 2011 Jun; 7(6):e1001391. PubMed ID: 21695223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans.
    Ooi SL; Priess JR; Henikoff S
    PLoS Genet; 2006 Jun; 2(6):e97. PubMed ID: 16846252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line.
    Bessler JB; Andersen EC; Villeneuve AM
    PLoS Genet; 2010 Jan; 6(1):e1000830. PubMed ID: 20107519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LET-418/Mi2 and SPR-5/LSD1 cooperatively prevent somatic reprogramming of C. elegans germline stem cells.
    Käser-Pébernard S; Müller F; Wicky C
    Stem Cell Reports; 2014 Apr; 2(4):547-59. PubMed ID: 24749077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs.
    Kudron M; Niu W; Lu Z; Wang G; Gerstein M; Snyder M; Reinke V
    Genome Biol; 2013 Jan; 14(1):R5. PubMed ID: 23347407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNAi pathways repress reprogramming of C. elegans germ cells during heat stress.
    Rogers AK; Phillips CM
    Nucleic Acids Res; 2020 May; 48(8):4256-4273. PubMed ID: 32187370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.
    Mainpal R; Nance J; Yanowitz JL
    Development; 2015 Oct; 142(20):3571-82. PubMed ID: 26395476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sperm-inherited H3K27me3 impacts offspring transcription and development in C. elegans.
    Kaneshiro KR; Rechtsteiner A; Strome S
    Nat Commun; 2019 Mar; 10(1):1271. PubMed ID: 30894520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRG-1 is required for both chromatin-based transcriptional silencing and genomic integrity of primordial germ cells in Caenorhabditis elegans.
    Miwa T; Inoue K; Sakamoto H
    Genes Cells; 2019 May; 24(5):377-389. PubMed ID: 30929290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic dynamics during germline development: insights from Drosophila and C. elegans.
    Gleason RJ; Chen X
    Curr Opin Genet Dev; 2023 Feb; 78():102017. PubMed ID: 36549194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An inverse relationship to germline transcription defines centromeric chromatin in C. elegans.
    Gassmann R; Rechtsteiner A; Yuen KW; Muroyama A; Egelhofer T; Gaydos L; Barron F; Maddox P; Essex A; Monen J; Ercan S; Lieb JD; Oegema K; Strome S; Desai A
    Nature; 2012 Apr; 484(7395):534-7. PubMed ID: 22495302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of germ cell differentiation in Caenorhabditis elegans.
    Ellis RE; Kimble J
    Ciba Found Symp; 1994; 182():179-88; discussion 189-92. PubMed ID: 7835149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLS-1, a novel P granule component, modulates a network of conserved RNA regulators to influence germ cell fate decisions.
    Rybarska A; Harterink M; Jedamzik B; Kupinski AP; Schmid M; Eckmann CR
    PLoS Genet; 2009 May; 5(5):e1000494. PubMed ID: 19461891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated C. elegans germ nuclei exhibit distinct genomic profiles of histone modification and gene expression.
    Han M; Wei G; McManus CE; Hillier LW; Reinke V
    BMC Genomics; 2019 Jun; 20(1):500. PubMed ID: 31208332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do histone modifications contribute to transgenerational epigenetic inheritance in C. elegans?
    Woodhouse RM; Ashe A
    Biochem Soc Trans; 2020 Jun; 48(3):1019-1034. PubMed ID: 32539084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repression of Germline Genes in
    Rechtsteiner A; Costello ME; Egelhofer TA; Garrigues JM; Strome S; Petrella LN
    Genetics; 2019 May; 212(1):125-140. PubMed ID: 30910798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmentally programmed histone H3 expression regulates cellular plasticity at the parental-to-early embryo transition.
    Gleason RJ; Guo Y; Semancik CS; Ow C; Lakshminarayanan G; Chen X
    Sci Adv; 2023 Apr; 9(14):eadh0411. PubMed ID: 37027463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells.
    Gaydos LJ; Rechtsteiner A; Egelhofer TA; Carroll CR; Strome S
    Cell Rep; 2012 Nov; 2(5):1169-77. PubMed ID: 23103171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny.
    Rechtsteiner A; Ercan S; Takasaki T; Phippen TM; Egelhofer TA; Wang W; Kimura H; Lieb JD; Strome S
    PLoS Genet; 2010 Sep; 6(9):e1001091. PubMed ID: 20824077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.