These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38164748)

  • 1. Chemoselective Intramolecular Morita-Baylis-Hillman Reaction; Acrylamide and Ketone as Sluggish Reacting Partners on a Labile Framework.
    Bharadwaj KC
    J Org Chem; 2024 Jan; 89(2):1073-1082. PubMed ID: 38164748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemoselective and Highly Rate Accelerated Intramolecular Aza-Morita-Baylis-Hillman Reaction.
    Bharadwaj KC
    J Org Chem; 2018 Dec; 83(23):14498-14506. PubMed ID: 30441893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remarkable influence of microwave heating on Morita-baylis-Hillman reaction in PEG-200.
    Aravind A; George S; Kumar S
    Chem Cent J; 2012 Apr; 6(1):30. PubMed ID: 22494595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enantioselective organocatalytic intramolecular Morita-Baylis-Hillman (IMBH) reaction of dienones, and elaboration of the IMBH adducts to fluorenones.
    Satpathi B; Wagulde SV; Ramasastry SSV
    Chem Commun (Camb); 2017 Jul; 53(57):8042-8045. PubMed ID: 28671200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the reaction rates of Morita-Baylis-Hillman reaction in heterocyclic aldehydes by substitutions.
    Kunnikuruvan S; Batra S; Nair NN
    Chemphyschem; 2012 Nov; 13(16):3723-30. PubMed ID: 22887878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morita-Baylis-Hillman Spirannulation under Phosphine- and Anion-Binding Catalysis.
    Singh B; Pandey SK; Malik N; Ramasastry SSV
    Org Lett; 2024 Apr; 26(15):3273-3278. PubMed ID: 38587460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Azidophosphonium salt-directed chemoselective synthesis of (
    Karthikeyan S; Shobana RK; Subimol KR; Monica JHR; Kumar AKK
    Beilstein J Org Chem; 2020; 16():1579-1587. PubMed ID: 32704324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal catalyst-free N-allylation/alkylation of imidazole and benzimidazole with Morita-Baylis-Hillman (MBH) alcohols and acetates.
    Mhasni O; Bouajila J; Rezgui F
    Beilstein J Org Chem; 2023; 19():1251-1258. PubMed ID: 37674521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morita-Baylis-Hillman reaction of acrylamide with isatin derivatives.
    Singh RM; Bharadwaj KC; Tiwari DK
    Beilstein J Org Chem; 2014; 10():2975-80. PubMed ID: 25550764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, biological activities, and structure-activity relationships of Morita-Baylis-Hillman adducts: An update.
    Devi N; Pathania AS; Singh V; Sharma S
    Arch Pharm (Weinheim); 2024 Jul; ():e2400372. PubMed ID: 38963326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct C(sp
    Wang S; Zheng L; Wang S; Ning S; Zhang Z; Xiang J
    Beilstein J Org Chem; 2021; 17():2505-2510. PubMed ID: 34646399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhodium(II)-Catalyzed Reaction of 1-Tosyl-1,2,3-triazoles with Morita-Baylis-Hillman Adducts: Synthesis of 3,4-Fused Pyrroles.
    Jia R; Meng J; Leng J; Yu X; Deng WP
    Chem Asian J; 2018 Sep; 13(17):2360-2364. PubMed ID: 29468826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morita-Baylis-Hillman-Type [3,3]-Rearrangement: Switching from Z- to E-Selective α-Arylation by New Rearrangement Partners.
    Zhang L; Bao W; Liang Y; Pan W; Li D; Kong L; Wang ZX; Peng B
    Angew Chem Int Ed Engl; 2021 May; 60(20):11414-11422. PubMed ID: 33644970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological Activities of Morita-Baylis-Hillman Adducts (MBHA).
    Ferreira LAMP; de Lima LM; Ferreira LKDP; Bernardo LR; Castro A; Lima Junior CG; de Almeida Vasconcellos MLA; Piuvezam MR
    Mini Rev Med Chem; 2023; 23(17):1691-1710. PubMed ID: 36733204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Et
    Abidi A; Oueslati Y; Rezgui F
    Beilstein J Org Chem; 2016; 12():2402-2409. PubMed ID: 28144308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage.
    Yang W; Tan D; Lee R; Li L; Pan Y; Huang KW; Tan CH; Jiang Z
    Chem Asian J; 2012 Apr; 7(4):771-7. PubMed ID: 22318922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio and density functional theory evidence on the rate-limiting step in the Morita-Baylis-Hillman reaction.
    Roy D; Sunoj RB
    Org Lett; 2007 Nov; 9(23):4873-6. PubMed ID: 17924642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organocatalytic asymmetric synthesis of substituted 3-hydroxy-2-oxindoles via Morita-Baylis-Hillman reaction.
    Liu YL; Wang BL; Cao JJ; Chen L; Zhang YX; Wang C; Zhou J
    J Am Chem Soc; 2010 Nov; 132(43):15176-8. PubMed ID: 20939578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives.
    Juma WP; Nyoni D; Brady D; Bode ML
    Chembiochem; 2022 Apr; 23(7):e202100527. PubMed ID: 34822736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones.
    Tong G; Zhu B; Lee R; Yang W; Tan D; Yang C; Han Z; Yan L; Huang KW; Jiang Z
    J Org Chem; 2013 May; 78(10):5067-72. PubMed ID: 23594149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.