BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 38164884)

  • 41. The evaluation of active transcriptional repressor domain for CRISPRi in plants.
    Xu L; Sun B; Liu S; Gao X; Zhou H; Li F; Li Y
    Gene; 2023 Jan; 851():146967. PubMed ID: 36261092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells.
    Javaid N; Pham TLH; Choi S
    Int J Mol Sci; 2021 Jan; 22(1):. PubMed ID: 33401508
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
    Mahas A; Neal Stewart C; Mahfouz MM
    Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CRISPR-assisted transcription activation by phase-separation proteins.
    Liu J; Chen Y; Nong B; Luo X; Cui K; Li Z; Zhang P; Tan W; Yang Y; Ma W; Liang P; Songyang Z
    Protein Cell; 2023 Dec; 14(12):874-887. PubMed ID: 36905356
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A CRISPR/dCas9-assisted system to clone toxic genes in Escherichia coli.
    Wen X; Zhang Y; Cheng H; An J; Guo Y; Wang L; Wang M
    Biochim Biophys Acta Gen Subj; 2021 Nov; 1865(11):129994. PubMed ID: 34450195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repurposing CRISPR System for Transcriptional Activation.
    Chen M; Qi LS
    Adv Exp Med Biol; 2017; 983():147-157. PubMed ID: 28639197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research.
    Martinez-Escobar A; Luna-Callejas B; Ramón-Gallegos E
    Front Oncol; 2020; 10():604948. PubMed ID: 33614489
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A gene therapy for inherited blindness using dCas9-VPR-mediated transcriptional activation.
    Böhm S; Splith V; Riedmayr LM; Rötzer RD; Gasparoni G; Nordström KJV; Wagner JE; Hinrichsmeyer KS; Walter J; Wahl-Schott C; Fenske S; Biel M; Michalakis S; Becirovic E
    Sci Adv; 2020 Aug; 6(34):eaba5614. PubMed ID: 32875106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expanding the Scope of Bacterial CRISPR Activation with PAM-Flexible dCas9 Variants.
    Kiattisewee C; Karanjia AV; Legut M; Daniloski Z; Koplik SE; Nelson J; Kleinstiver BP; Sanjana NE; Carothers JM; Zalatan JG
    ACS Synth Biol; 2022 Dec; 11(12):4103-4112. PubMed ID: 36378874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes.
    Gilbert LA; Larson MH; Morsut L; Liu Z; Brar GA; Torres SE; Stern-Ginossar N; Brandman O; Whitehead EH; Doudna JA; Lim WA; Weissman JS; Qi LS
    Cell; 2013 Jul; 154(2):442-51. PubMed ID: 23849981
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthetic Epigenetic Reprogramming of Mesenchymal to Epithelial States Using the CRISPR/dCas9 Platform in Triple Negative Breast Cancer.
    Waryah C; Cursons J; Foroutan M; Pflueger C; Wang E; Molania R; Woodward E; Sorolla A; Wallis C; Moses C; Glas I; Magalhães L; Thompson EW; Fearnley LG; Chaffer CL; Davis M; Papenfuss AT; Redfern A; Lister R; Esteller M; Blancafort P
    Adv Sci (Weinh); 2023 Aug; 10(22):e2301802. PubMed ID: 37217832
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 53.
    Lo A; Qi L
    F1000Res; 2017; 6():. PubMed ID: 28649363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene activation by a CRISPR-assisted
    Xu X; Gao J; Dai W; Wang D; Wu J; Wang J
    Elife; 2019 Apr; 8():. PubMed ID: 30973327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
    Lebar T; Jerala R
    Methods Mol Biol; 2018; 1772():191-203. PubMed ID: 29754229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation.
    Cai R; Lv R; Shi X; Yang G; Jin J
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834313
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review on CRISPR/Cas-based epigenetic regulation in plants.
    Jogam P; Sandhya D; Alok A; Peddaboina V; Allini VR; Zhang B
    Int J Biol Macromol; 2022 Oct; 219():1261-1271. PubMed ID: 36057300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Activating PTEN Tumor Suppressor Expression with the CRISPR/dCas9 System.
    Moses C; Nugent F; Waryah CB; Garcia-Bloj B; Harvey AR; Blancafort P
    Mol Ther Nucleic Acids; 2019 Mar; 14():287-300. PubMed ID: 30654190
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modular, Synthetic Boolean Logic Gates Enabled in
    Presnell KV; Melhem O; Morse NJ; Alper HS
    ACS Synth Biol; 2022 Oct; 11(10):3414-3425. PubMed ID: 36206523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An Easy and Efficient Strategy for the Enhancement of Epothilone Production Mediated by TALE-TF and CRISPR/dcas9 Systems in
    Ye W; Liu T; Zhu M; Zhang W; Huang Z; Li S; Li H; Kong Y; Chen Y
    Front Bioeng Biotechnol; 2019; 7():334. PubMed ID: 32039165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.