These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38164888)

  • 21. A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage.
    Wu W; Wang AP; Luo J; Liu TL
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216662. PubMed ID: 36526569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Power Near-Neutral Aqueous All Organic Redox Flow Battery Enabled with a Pair of Anionic Redox Species.
    Gao M; Salla M; Song Y; Wang Q
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208223. PubMed ID: 35997142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical Roles of pH and Activated Carbon on the Speciation and Performance of an Archetypal Organometallic Complex for Aqueous Redox Flow Batteries.
    Burghoff A; Holubowitch NE
    J Am Chem Soc; 2024 Apr; 146(14):9728-9740. PubMed ID: 38535624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox Targeting-based Neutral Aqueous Flow Battery with High Energy Density and Low Cost.
    Yan S; Huang S; Xu H; Li L; Zou H; Ding M; Jia C; Wang Q
    ChemSusChem; 2023 Oct; 16(19):e202300710. PubMed ID: 37475569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries.
    Pan M; Lu Y; Lu S; Yu B; Wei J; Liu Y; Jin Z
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44174-44183. PubMed ID: 34496562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries.
    Luo J; Hu B; Debruler C; Liu TL
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):231-235. PubMed ID: 29181865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of Functional Groups to Enhance the Solubility and Stability of Viologen in Aqueous Organic Redox Flow Batteries.
    Hwang S; Oh M; Lee KJ; Jin CS; Park SK; Seo C; Yeon SH; Kim DH; Gueon D; Han YK; Shin KH
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28645-28654. PubMed ID: 38787734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries.
    Yan Y; Vaid TP; Sanford MS
    J Am Chem Soc; 2020 Oct; 142(41):17564-17571. PubMed ID: 33006474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries.
    Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organic Electroactive Materials for Aqueous Redox Flow Batteries.
    Yang G; Zhu Y; Hao Z; Lu Y; Zhao Q; Zhang K; Chen J
    Adv Mater; 2023 Aug; 35(33):e2301898. PubMed ID: 37158492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phosphonate-based iron complex for a cost-effective and long cycling aqueous iron redox flow battery.
    Nambafu GS; Hollas AM; Zhang S; Rice PS; Boglaienko D; Fulton JL; Li M; Huang Q; Zhu Y; Reed DM; Sprenkle VL; Li G
    Nat Commun; 2024 Mar; 15(1):2566. PubMed ID: 38528014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing Robust Two-Electron Storage Extended Bipyridinium Anolytes for pH-Neutral Aqueous Organic Redox Flow Batteries.
    Tang G; Liu Y; Li Y; Peng K; Zuo P; Yang Z; Xu T
    JACS Au; 2022 May; 2(5):1214-1222. PubMed ID: 35647585
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indolo[2,3-
    Zhang W; Walser-Kuntz R; Tracy JS; Schramm TK; Shee J; Head-Gordon M; Chen G; Helms BA; Sanford MS; Toste FD
    J Am Chem Soc; 2023 Aug; 145(34):18877-18887. PubMed ID: 37585274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decoupled aqueous batteries using pH-decoupling electrolytes.
    Zhu YH; Cui YF; Xie ZL; Zhuang ZB; Huang G; Zhang XB
    Nat Rev Chem; 2022 Jul; 6(7):505-517. PubMed ID: 37117314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Asymmetric vanadium flow batteries: long lifespan via an anolyte overhang strategy.
    Mu D; Zhao Y; Yu L; Liu L; Xi J
    Phys Chem Chem Phys; 2017 Nov; 19(43):29195-29203. PubMed ID: 29067358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfonate-Based Triazine Multiple-Electron Anolyte for Aqueous Organic Flow Batteries.
    Asenjo-Pascual J; Wiberg C; Shahsavan M; Salmeron-Sanchez I; Mauleon P; Aviles Moreno JR; Ocon P; Peljo P
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36242-36249. PubMed ID: 37489711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery.
    Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.