BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38165143)

  • 1. 3D-printed microfluidic device for high-throughput production of lipid nanoparticles incorporating SARS-CoV-2 spike protein mRNA.
    Lin WS; Bostic WKV; Malmstadt N
    Lab Chip; 2024 Jan; 24(2):162-170. PubMed ID: 38165143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.
    Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Lipid Nanoparticles with Histidinamide-Conjugated Cholesterol for Improved Intracellular Delivery of mRNA.
    Jung O; Jung HY; Thuy LT; Choi M; Kim S; Jeon HG; Yang J; Kim SM; Kim TD; Lee E; Kim Y; Choi JS
    Adv Healthc Mater; 2024 Jun; 13(14):e2303857. PubMed ID: 38344923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Manufacturing Process of Lipid Nanoparticles for mRNA Delivery Using Machine Learning.
    Sato S; Sano S; Muto H; Kubara K; Kondo K; Miyazaki T; Suzuki Y; Uemoto Y; Ukai K
    Chem Pharm Bull (Tokyo); 2024; 72(6):529-539. PubMed ID: 38839372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Throughput-scalable manufacturing of SARS-CoV-2 mRNA lipid nanoparticle vaccines.
    Shepherd SJ; Han X; Mukalel AJ; El-Mayta R; Thatte AS; Wu J; Padilla MS; Alameh MG; Srikumar N; Lee D; Weissman D; Issadore D; Mitchell MJ
    Proc Natl Acad Sci U S A; 2023 Aug; 120(33):e2303567120. PubMed ID: 37556502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery.
    Maeki M; Uno S; Niwa A; Okada Y; Tokeshi M
    J Control Release; 2022 Apr; 344():80-96. PubMed ID: 35183654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.
    Tam A; Kulkarni J; An K; Li L; Dorscheid DR; Singhera GK; Bernatchez P; Reid G; Chan K; Witzigmann D; Cullis PR; Sin DD; Lim CJ
    Eur J Pharm Sci; 2022 Sep; 176():106234. PubMed ID: 35688311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of siRNA-Loaded Lipid Nanoparticles using a Microfluidic Device.
    Maeki M; Okada Y; Uno S; Niwa A; Ishida A; Tani H; Tokeshi M
    J Vis Exp; 2022 Mar; (181):. PubMed ID: 35404350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers.
    Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M
    PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery.
    Sun M; Dang UJ; Yuan Y; Psaras AM; Osipitan O; Brooks TA; Lu F; Di Pasqua AJ
    AAPS PharmSciTech; 2022 May; 23(5):135. PubMed ID: 35534697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
    Wang C; Zhang Y; Dong Y
    Acc Chem Res; 2021 Dec; 54(23):4283-4293. PubMed ID: 34793124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device.
    Shepherd SJ; Warzecha CC; Yadavali S; El-Mayta R; Alameh MG; Wang L; Weissman D; Wilson JM; Issadore D; Mitchell MJ
    Nano Lett; 2021 Jul; 21(13):5671-5680. PubMed ID: 34189917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Ionizable Lipid Nanoparticles for SARS-CoV-2 Omicron mRNA Delivery.
    Long J; Yu C; Zhang H; Cao Y; Sang Y; Lu H; Zhang Z; Wang X; Wang H; Song G; Yang J; Wang S
    Adv Healthc Mater; 2023 May; 12(13):e2202590. PubMed ID: 36716702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing.
    O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL
    Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer.
    Ripoll M; Martin E; Enot M; Robbe O; Rapisarda C; Nicolai MC; Deliot A; Tabeling P; Authelin JR; Nakach M; Wils P
    Sci Rep; 2022 Jun; 12(1):9483. PubMed ID: 35676394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-Catalyzed One-Step Synthesis of Ionizable Cationic Lipids for Lipid Nanoparticle-Based mRNA COVID-19 Vaccines.
    Li Z; Zhang XQ; Ho W; Li F; Gao M; Bai X; Xu X
    ACS Nano; 2022 Nov; 16(11):18936-18950. PubMed ID: 36269150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the In Vitro and In Vivo Efficiency of mRNA-Lipid Nanoparticles Formulated by Microfluidic Mixing.
    El-Mayta R; Padilla MS; Billingsley MM; Han X; Mitchell MJ
    J Vis Exp; 2023 Jan; (191):. PubMed ID: 36744791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Basic Method for Formulating mRNA-Lipid Nanoparticle Vaccines in the Lab.
    Jarzebska NT; Frei J; Mellett M; Kündig TM; Pascolo S; Reichmuth AM
    Methods Mol Biol; 2024; 2786():237-254. PubMed ID: 38814398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.