BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38165417)

  • 1. Towards hybrid quantum mechanical/molecular mechanical simulations of Li and Na intercalation in graphite - force field development and DFTB parametrisation.
    Purtscher FRS; Hofer TS
    Phys Chem Chem Phys; 2024 Jan; 26(3):1729-1740. PubMed ID: 38165417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the range of applicability of structure- and energy-adjusted QM/MM link bonds III: QM/MM MD simulations of solid-state systems at the example of layered carbon structures.
    Purtscher FRS; Hofer TS
    J Comput Chem; 2024 May; ():. PubMed ID: 38795379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential.
    Anniés S; Panosetti C; Voronenko M; Mauth D; Rahe C; Scheurer C
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replica exchange molecular dynamics for Li-intercalation in graphite: a new solution for an old problem.
    Park H; Wragg DS; Koposov AY
    Chem Sci; 2024 Feb; 15(8):2745-2754. PubMed ID: 38404401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Properties of Metal-Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach.
    Purtscher FRS; Christanell L; Schulte M; Seiwald S; Rödl M; Ober I; Maruschka LK; Khoder H; Schwartz HA; Bendeif EE; Hofer TS
    J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(3):1560-1575. PubMed ID: 36721770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of concentration on Li diffusivity and conductivity in rutile TiO2.
    Yildirim H; Greeley JP; Sankaranarayanan SK
    Phys Chem Chem Phys; 2012 Apr; 14(13):4565-76. PubMed ID: 22354386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Charge Transfer upon Li- and Na-Ion Insertion in Fine-Grained Graphitic Material as Probed by NMR.
    Vyalikh A; Koroteev VO; Münchgesang W; Köhler T; Röder C; Brendler E; Okotrub AV; Bulusheva LG; Meyer DC
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9291-9300. PubMed ID: 30741532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid Machine Learning-Enabled Potential Energy Model for Atomistic Simulation of Lithium Intercalation into Graphite from Plating to Overlithiation.
    Yang PY; Chiang YH; Pao CW; Chang CC
    J Chem Theory Comput; 2023 Jul; 19(14):4533-4545. PubMed ID: 37140982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials.
    Qian HJ; van Duin AC; Morokuma K; Irle S
    J Chem Theory Comput; 2011 Jul; 7(7):2040-8. PubMed ID: 26606475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercalation chemistry of graphite: alkali metal ions and beyond.
    Li Y; Lu Y; Adelhelm P; Titirici MM; Hu YS
    Chem Soc Rev; 2019 Aug; 48(17):4655-4687. PubMed ID: 31294739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced and Faster Potassium Storage in Graphene with Respect to Graphite: A Comparative Study with Lithium Storage.
    Sonia FJ; Jangid MK; Aslam M; Johari P; Mukhopadhyay A
    ACS Nano; 2019 Feb; 13(2):2190-2204. PubMed ID: 30642160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase engineering of layered anode materials during ion-intercalation in Van der Waal heterostructures.
    Parida S; Dobley A; Carter CB; Dongare AM
    Sci Rep; 2023 Apr; 13(1):5408. PubMed ID: 37012258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive Force Field Study of Li/C Systems for Electrical Energy Storage.
    Raju M; Ganesh P; Kent PR; van Duin AC
    J Chem Theory Comput; 2015 May; 11(5):2156-66. PubMed ID: 26574418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the origin of unstable sodium graphite intercalation compounds.
    Lenchuk O; Adelhelm P; Mollenhauer D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19378-19390. PubMed ID: 31455956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic Tuning of Graphite Thermal Conductivity by Lithium Intercalation.
    Qian X; Gu X; Dresselhaus MS; Yang R
    J Phys Chem Lett; 2016 Nov; 7(22):4744-4750. PubMed ID: 27806567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFTB Modeling of Lithium-Intercalated Graphite with Machine-Learned Repulsive Potential.
    Panosetti C; Anniés SB; Grosu C; Seidlmayer S; Scheurer C
    J Phys Chem A; 2021 Jan; 125(2):691-699. PubMed ID: 33426892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li
    Prasetyo N; Hünenberger PH; Hofer TS
    J Chem Theory Comput; 2018 Dec; 14(12):6443-6459. PubMed ID: 30284829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvated Ion Intercalation in Graphite: Sodium and Beyond.
    Park J; Xu ZL; Kang K
    Front Chem; 2020; 8():432. PubMed ID: 32509735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Surface Modification on the Lithium, Sodium, and Potassium Intercalation Efficiency and Capacity of Few-Layer Graphene Electrodes.
    Nijamudheen A; Sarbapalli D; Hui J; Rodríguez-López J; Mendoza-Cortes JL
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):19393-19401. PubMed ID: 32109048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.