These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38165619)

  • 1. Identification of Unambiguous Borrelia Peptides in Human Urine Using Affinity Capture and Mass Spectrometry.
    Cornero R; Irfan SS; Cachaco S; Zhou W; Byne A; Howard M; McIntyre H; Birkaya B; Liotta L; Luchini A
    Methods Mol Biol; 2024; 2742():105-122. PubMed ID: 38165619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Enrichment strategy of cysteine-containing peptides based on covalent chromatography].
    Mi W; Wang J; Ying W; Jia W; Cai Y; Qian X
    Se Pu; 2010 Feb; 28(2):108-14. PubMed ID: 20556946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate mass tag retention time database for urine proteome analysis by chromatography--mass spectrometry.
    Agron IA; Avtonomov DM; Kononikhin AS; Popov IA; Moshkovskii SA; Nikolaev EN
    Biochemistry (Mosc); 2010 May; 75(5):636-41. PubMed ID: 20632944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of peptide retention time in proteome research].
    Shao C; Gao Y
    Se Pu; 2010 Feb; 28(2):128-34. PubMed ID: 20556949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cysteinyl peptide capture for shotgun proteomics: global assessment of chemoselective fractionation.
    Lin D; Li J; Slebos RJ; Liebler DC
    J Proteome Res; 2010 Oct; 9(10):5461-72. PubMed ID: 20731415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaching for the deep proteome: recent nano liquid chromatography coupled with tandem mass spectrometry-based studies on the deep proteome.
    Choi YS
    Arch Pharm Res; 2012 Nov; 35(11):1861-70. PubMed ID: 23212627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.
    Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J
    Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of NanoLC Column and Gradient Length as well as MS/MS Frequency and Sample Complexity on Shotgun Protein Identification of Marine Bacteria.
    Wöhlbrand L; Rabus R; Blasius B; Feenders C
    J Mol Microbiol Biotechnol; 2017; 27(3):199-212. PubMed ID: 28850952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry.
    Larsen SC; Leutert M; Bilan V; Martello R; Jungmichel S; Young C; Hottiger MO; Nielsen ML
    Methods Mol Biol; 2017; 1608():149-162. PubMed ID: 28695509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Displacement Chromatography to Online Two-Dimensional Liquid Chromatography Coupled to Tandem Mass Spectrometry Improves Peptide Separation Efficiency and Detectability for the Analysis of Complex Proteomes.
    Kwiatkowski M; Krösser D; Wurlitzer M; Steffen P; Barcaru A; Krisp C; Horvatovich P; Bischoff R; Schlüter H
    Anal Chem; 2018 Aug; 90(16):9951-9958. PubMed ID: 30014690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of recombinant insulins in human urine by liquid chromatography-electrospray ionization tandem mass spectrometry after immunoaffinity purification based on monolithic microcolumns.
    Mazzarino M; Senofonte M; Martinelli F; de la Torre X; Botrè F
    Anal Bioanal Chem; 2019 Dec; 411(30):8153-8162. PubMed ID: 31797014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass Spectrometry to Study the Bacterial Proteome from a Single Colony.
    Zhou J; Zhang L; Chuan H; Sloan A; Tsang R; Cheng K
    Methods Mol Biol; 2019; 1968():113-121. PubMed ID: 30929210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis.
    LaMarche BL; Crowell KL; Jaitly N; Petyuk VA; Shah AR; Polpitiya AD; Sandoval JD; Kiebel GR; Monroe ME; Callister SJ; Metz TO; Anderson GA; Smith RD
    BMC Bioinformatics; 2013 Feb; 14():49. PubMed ID: 23398735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput.
    Macron C; Núñez Galindo A; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building ProteomeTools based on a complete synthetic human proteome.
    Zolg DP; Wilhelm M; Schnatbaum K; Zerweck J; Knaute T; Delanghe B; Bailey DJ; Gessulat S; Ehrlich HC; Weininger M; Yu P; Schlegl J; Kramer K; Schmidt T; Kusebauch U; Deutsch EW; Aebersold R; Moritz RL; Wenschuh H; Moehring T; Aiche S; Huhmer A; Reimer U; Kuster B
    Nat Methods; 2017 Mar; 14(3):259-262. PubMed ID: 28135259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass Spectrometry-Based Proteomics for Biomarker Discovery.
    Cao Z; Yu LR
    Methods Mol Biol; 2022; 2486():3-17. PubMed ID: 35437715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel strategy for global mapping of O-GlcNAc proteins and peptides using selective enzymatic deglycosylation, HILIC enrichment and mass spectrometry identification.
    Shen B; Zhang W; Shi Z; Tian F; Deng Y; Sun C; Wang G; Qin W; Qian X
    Talanta; 2017 Jul; 169():195-202. PubMed ID: 28411811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine.
    Klein J; Papadopoulos T; Mischak H; Mullen W
    Electrophoresis; 2014 Apr; 35(7):1060-4. PubMed ID: 24254231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.