These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 38165819)

  • 1. Antibodies, repertoires and microdevices in antibody discovery and characterization.
    Schlotheuber LJ; Lüchtefeld I; Eyer K
    Lab Chip; 2024 Feb; 24(5):1207-1225. PubMed ID: 38165819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers.
    Surappa S; Multani P; Parlatan U; Sinawang PD; Kaifi J; Akin D; Demirci U
    Lab Chip; 2023 Jun; 23(13):2942-2958. PubMed ID: 37314731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in microfluidics for drug discovery.
    Lombardi D; Dittrich PS
    Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile and rapid microfluidics-assisted antibody discovery.
    Gaa R; Menang-Ndi E; Pratapa S; Nguyen C; Kumar S; Doerner A
    MAbs; 2021; 13(1):1978130. PubMed ID: 34586015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRESCIENT: platform for the rapid evaluation of antibody success using integrated microfluidics enabled technology.
    Wippold JA; Wang H; Tingling J; Leibowitz JL; de Figueiredo P; Han A
    Lab Chip; 2020 May; 20(9):1628-1638. PubMed ID: 32196032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The latest advances in high content screening in microfluidic devices.
    Liu W; Wang J; Qi H; Jiao Q; Wu L; Wang Y; Liang Q
    Expert Opin Drug Discov; 2023 Jul; 18(7):781-795. PubMed ID: 37219918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aptamer-Functionalized Microdevices for Bioanalysis.
    Xue J; Chen F; Bai M; Cao X; Fu W; Zhang J; Zhao Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9402-9411. PubMed ID: 33170621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics-Based Sensing of Biospecies.
    Xing Y; Zhao L; Cheng Z; Lv C; Yu F; Yu F
    ACS Appl Bio Mater; 2021 Mar; 4(3):2160-2191. PubMed ID: 35014344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.
    Vladisavljević GT; Khalid N; Neves MA; Kuroiwa T; Nakajima M; Uemura K; Ichikawa S; Kobayashi I
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1626-63. PubMed ID: 23899864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and
    Yoon S; Kilicarslan You D; Jeong U; Lee M; Kim E; Jeon TJ; Kim SM
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38275308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Point-of-Care Microfluidic Devices to Diagnose Iron Deficiency Anemia.
    Yap BK; M Soair SN; Talik NA; Lim WF; Mei I L
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lab-on-a-chip systems for cancer biomarker diagnosis.
    Özyurt C; Uludağ İ; İnce B; Sezgintürk MK
    J Pharm Biomed Anal; 2023 Mar; 226():115266. PubMed ID: 36706542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review.
    Zhu X; Wang K; Yan H; Liu C; Zhu X; Chen B
    Environ Sci Technol; 2022 Jan; 56(2):711-731. PubMed ID: 34985862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Customizable Microfluidic Devices: Progress, Constraints, and Future Advances.
    Aljabali AAA; Obeid MA; Mishra V; El-Tanani M; Tambuwala MM
    Curr Drug Deliv; 2024; 21(10):1285-1299. PubMed ID: 39034714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian display to secretion switchable libraries for antibody preselection and high throughput functional screening.
    Gaa R; Mayer HM; Noack D; Kumari K; Guenther R; Tsai SP; Ji Q; Doerner A
    MAbs; 2023; 15(1):2251190. PubMed ID: 37646089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Devices for Forensic DNA Analysis: A Review.
    Bruijns B; van Asten A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27527231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revolutionizing Drug Discovery: The Impact of Distinct Designs and Biosensor Integration in Microfluidics-Based Organ-on-a-Chip Technology.
    Yuan S; Yuan H; Hay DC; Hu H; Wang C
    Biosensors (Basel); 2024 Sep; 14(9):. PubMed ID: 39329800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.