These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38165865)

  • 1. Recent progress in SERS monitoring of photocatalytic reactions.
    Zheng X; Ye Z; Akmal Z; He C; Zhang J; Wang L
    Chem Soc Rev; 2024 Jan; 53(2):656-683. PubMed ID: 38165865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zaleski S; Wilson AJ; Mattei M; Chen X; Goubert G; Cardinal MF; Willets KA; Van Duyne RP
    Acc Chem Res; 2016 Sep; 49(9):2023-30. PubMed ID: 27602428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Chemical and Physical Processes Driving Plasmonic Photocatalysis Using Surface-Enhanced Raman Spectroscopies.
    Warkentin CL; Yu Z; Sarkar A; Frontiera RR
    Acc Chem Res; 2021 May; 54(10):2457-2466. PubMed ID: 33957039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Reliable and Efficient Plasmonic Nanopatterning for Surface- and Tip-Enhanced Raman Spectroscopies.
    Sasso A; Capaccio A; Rusciano G
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis.
    Nilghaz A; Mahdi Mousavi S; Amiri A; Tian J; Cao R; Wang X
    J Agric Food Chem; 2022 May; 70(18):5463-5476. PubMed ID: 35471937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell Nanostructure-Enhanced Raman Spectroscopy for Surface Catalysis.
    Zhang H; Duan S; Radjenovic PM; Tian ZQ; Li JF
    Acc Chem Res; 2020 Apr; 53(4):729-739. PubMed ID: 32031367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering.
    Dos Santos DP; Temperini MLA; Brolo AG
    Acc Chem Res; 2019 Feb; 52(2):456-464. PubMed ID: 30668089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate.
    Chen J; Li M; Yang Y; Liu H; Zhao B; Ozaki Y; Song W
    J Colloid Interface Sci; 2024 Apr; 660():669-680. PubMed ID: 38271803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures.
    Su HS; Feng HS; Wu X; Sun JJ; Ren B
    Nanoscale; 2021 Sep; 13(33):13962-13975. PubMed ID: 34477677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From SERS to TERS and Beyond: Molecules as Probes of Nanoscopic Optical Fields.
    El-Khoury PZ; Schultz ZD
    J Phys Chem C Nanomater Interfaces; 2020 Dec; 124(50):27267-27275. PubMed ID: 34306295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Raman Spectroscopy Substrates: Plasmonic Metals to Graphene.
    Mhlanga N; Ntho TA; Chauke H; Sikhwivhilu L
    Front Chem; 2022; 10():832282. PubMed ID: 35355787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy.
    Tian ZQ; Ren B; Li JF; Yang ZL
    Chem Commun (Camb); 2007 Sep; (34):3514-34. PubMed ID: 18080535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
    Zrimsek AB; Chiang N; Mattei M; Zaleski S; McAnally MO; Chapman CT; Henry AI; Schatz GC; Van Duyne RP
    Chem Rev; 2017 Jun; 117(11):7583-7613. PubMed ID: 28610424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering biomolecular complexities: the indispensable role of surface-enhanced Raman spectroscopy in modern bioanalytical research.
    Xia L; Huang Y; Wang Q; Wang X; Wang Y; Wu J; Li Y
    Analyst; 2024 Apr; 149(9):2526-2541. PubMed ID: 38623605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.