BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38166112)

  • 1. The Bradyrhizobium japonicum exporter ExsFGH is involved in efflux of ferric xenosiderophores from the periplasm.
    Ong A; O'Brian MR
    PLoS One; 2024; 19(1):e0296306. PubMed ID: 38166112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bradyrhizobium japonicum fsrB gene is essential for utilization of structurally diverse ferric siderophores to fulfill its nutritional iron requirement.
    Ong A; O'Brian MR
    Mol Microbiol; 2023 Mar; 119(3):340-349. PubMed ID: 36648393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B.
    Chan DCK; Burrows LL
    mBio; 2023 Feb; 14(1):e0314922. PubMed ID: 36507834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic utilization of Fe(III)-xenosiderophores among Bacteroides species and the distinct assimilation of Fe(III)-ferrichrome by Bacteroides fragilis within the genus.
    Rocha ER; Krykunivsky AS
    Microbiologyopen; 2017 Aug; 6(4):. PubMed ID: 28397401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid evolution of a bacterial iron acquisition system.
    Chatterjee A; O'Brian MR
    Mol Microbiol; 2018 Apr; 108(1):90-100. PubMed ID: 29381237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
    Small SK; Puri S; Sangwan I; O'Brian MR
    J Bacteriol; 2009 Mar; 191(5):1361-8. PubMed ID: 19114488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The divalent metal ion exporter IhpABC is required to maintain iron homeostasis under low to moderate environmental iron conditions in the bacterium Bradyrhizobium japonicum.
    Zhang F; O'Brian MR
    Mol Microbiol; 2024 Jan; 121(1):85-97. PubMed ID: 38038163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a system for hydroxamate xenosiderophore-mediated iron transport in
    Hussein SM; Sofoluwe A; Paleja A; Duhme-Klair A; Thomas MS
    Microbiology (Reading); 2024 Jan; 170(1):. PubMed ID: 38189440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPase components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichrome and ferrioxamine B.
    Cuív PO; Keogh D; Clarke P; O'Connell M
    Mol Microbiol; 2008 Dec; 70(5):1261-73. PubMed ID: 18990190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of siderophore-mediated iron transport in Geotrichum candidum, a non-siderophore producer.
    Mor H; Barash I
    Biol Met; 1990; 2(4):209-13. PubMed ID: 2143917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of genes involved in siderophore transport in Streptomyces coelicolor A3(2).
    Bunet R; Brock A; Rexer HU; Takano E
    FEMS Microbiol Lett; 2006 Sep; 262(1):57-64. PubMed ID: 16907739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Siderophore Transporters Sit1 and Sit2 Are Essential for Utilization of Ferrichrome-, Ferrioxamine- and Coprogen-Type Siderophores in
    Aguiar M; Orasch T; Misslinger M; Dietl AM; Gsaller F; Haas H
    J Fungi (Basel); 2021 Sep; 7(9):. PubMed ID: 34575806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Nitrosomonas europaea NitABC iron transporter in the uptake of Fe3+-siderophore complexes.
    Vajrala N; Sayavedra-Soto LA; Bottomley PJ; Arp DJ
    Arch Microbiol; 2010 Nov; 192(11):899-908. PubMed ID: 20737137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.
    Sankari S; O'Brian MR
    J Biol Chem; 2016 Jul; 291(30):15653-62. PubMed ID: 27288412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways.
    Schalk IJ; Guillon L
    Amino Acids; 2013 May; 44(5):1267-77. PubMed ID: 23443998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters.
    Yun CW; Tiedeman JS; Moore RE; Philpott CC
    J Biol Chem; 2000 May; 275(21):16354-9. PubMed ID: 10748025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin.
    Clarke TE; Braun V; Winkelmann G; Tari LW; Vogel HJ
    J Biol Chem; 2002 Apr; 277(16):13966-72. PubMed ID: 11805094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for a common siderophore transport system but different siderophore receptors in Neurospora crassa.
    Huschka H; Naegeli HU; Leuenberger-Ryf H; Keller-Schierlein W; Winkelmann G
    J Bacteriol; 1985 May; 162(2):715-21. PubMed ID: 2985545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae.
    Yun CW; Bauler M; Moore RE; Klebba PE; Philpott CC
    J Biol Chem; 2001 Mar; 276(13):10218-23. PubMed ID: 11120744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of iron-free siderophore, a common feature of siderophore outer membrane transporters of Escherichia coli and Pseudomonas aeruginosa.
    Hoegy F; Celia H; Mislin GL; Vincent M; Gallay J; Schalk IJ
    J Biol Chem; 2005 May; 280(21):20222-30. PubMed ID: 15784620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.