These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38166172)

  • 1. Computing probability density of the first passage time for state transition in stochastic dynamical systems driven by Brownian motions: A singular integral method.
    Sun X; Yang F; Sun T
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38166172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time evolution of probability density in stochastic dynamical systems with time delays: The governing equation and its numerical solution.
    Sun X; Yang F
    Chaos; 2022 Dec; 32(12):123124. PubMed ID: 36587317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning framework for computing the most probable paths of stochastic dynamical systems.
    Li Y; Duan J; Liu X
    Phys Rev E; 2021 Jan; 103(1-1):012124. PubMed ID: 33601611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting stochastic governing laws by non-local Kramers-Moyal formulae.
    Lu Y; Li Y; Duan J
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210195. PubMed ID: 35719068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering transition phenomena from data of stochastic dynamical systems with Lévy noise.
    Lu Y; Duan J
    Chaos; 2020 Sep; 30(9):093110. PubMed ID: 33003930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical path integral calculation of the probability function and exit time: an application to non-gradient drift forces.
    Mora F; Coullet P; Rica S; Tirapegui E
    Philos Trans A Math Phys Eng Sci; 2018 Nov; 376(2135):. PubMed ID: 30420549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A first-passage-time analysis of the periodically forced noisy leaky integrate-and-fire model.
    Shimokawa T; Pakdaman K; Takahata T; Tanabe S; Sato S
    Biol Cybern; 2000 Oct; 83(4):327-40. PubMed ID: 11039698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weiss mean-field approximation for multicomponent stochastic spatially extended systems.
    Kurushina SE; Maximov VV; Romanovskii YM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022135. PubMed ID: 25215716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation.
    Sun W; Feng J; Su J; Liang Y
    Chaos; 2022 Mar; 32(3):033131. PubMed ID: 35364842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computing the optimal path in stochastic dynamical systems.
    Bauver M; Forgoston E; Billings L
    Chaos; 2016 Aug; 26(8):083101. PubMed ID: 27586597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved integral equation solution for the first passage time of leaky integrate-and-fire neurons.
    Dong Y; Mihalas S; Niebur E
    Neural Comput; 2011 Feb; 23(2):421-34. PubMed ID: 21105825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
    Barajas-Solano DA; Tartakovsky AM
    Phys Rev E; 2016 May; 93(5):052121. PubMed ID: 27300844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical behavior of a nonlocal Fokker-Planck equation for a stochastic system with tempered stable noise.
    Lin L; Duan J; Wang X; Zhang Y
    Chaos; 2021 May; 31(5):051105. PubMed ID: 34240951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.
    Bressloff PC
    J Math Neurosci; 2015; 5():4. PubMed ID: 25852979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.
    Venturi D; Karniadakis GE
    Proc Math Phys Eng Sci; 2014 Jun; 470(2166):20130754. PubMed ID: 24910519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate processes in a delayed, stochastically driven, and overdamped system.
    Guillouzic S; L'Heureux I; Longtin A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4906-14. PubMed ID: 11031533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting critical transitions in multiscale dynamical systems using reservoir computing.
    Lim SH; Theo Giorgini L; Moon W; Wettlaufer JS
    Chaos; 2020 Dec; 30(12):123126. PubMed ID: 33380032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting the maximum likelihood transition path from data of stochastic dynamical systems.
    Dai M; Gao T; Lu Y; Zheng Y; Duan J
    Chaos; 2020 Nov; 30(11):113124. PubMed ID: 33261328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Addressing the curse of dimensionality in stochastic dynamics: a Wiener path integral variational formulation with free boundaries.
    Petromichelakis I; Kougioumtzoglou IA
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200385. PubMed ID: 33362412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic response analysis for nonlinear vibration systems with adjustable stiffness property under random excitation.
    Wang S; Han K
    PLoS One; 2018; 13(8):e0200922. PubMed ID: 30074995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.