BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38166659)

  • 1. GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations.
    Yao D; Li B; Zhan X; Zhan X; Yu L
    BMC Bioinformatics; 2024 Jan; 25(1):5. PubMed ID: 38166659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Node-adaptive graph Transformer with structural encoding for accurate and robust lncRNA-disease association prediction.
    Li G; Bai P; Liang C; Luo J
    BMC Genomics; 2024 Jan; 25(1):73. PubMed ID: 38233788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph Convolutional Network and Convolutional Neural Network Based Method for Predicting lncRNA-Disease Associations.
    Xuan P; Pan S; Zhang T; Liu Y; Sun H
    Cells; 2019 Aug; 8(9):. PubMed ID: 31480350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of lncRNA and disease associations based on residual graph convolutional networks with attention mechanism.
    Wang S; Qiao J; Feng S
    Sci Rep; 2024 Mar; 14(1):5185. PubMed ID: 38431702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network.
    Wang L; Zhong C
    BMC Bioinformatics; 2022 Jan; 23(1):11. PubMed ID: 34983363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting lncRNA-disease associations using multiple metapaths in hierarchical graph attention networks.
    Yao D; Deng Y; Zhan X; Zhan X
    BMC Bioinformatics; 2024 Jan; 25(1):46. PubMed ID: 38287236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LDAformer: predicting lncRNA-disease associations based on topological feature extraction and Transformer encoder.
    Zhou Y; Wang X; Yao L; Zhu M
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36094081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model.
    Liang Y; Zhang ZQ; Liu NN; Wu YN; Gu CL; Wang YL
    BMC Bioinformatics; 2022 May; 23(1):189. PubMed ID: 35590258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A random forest based computational model for predicting novel lncRNA-disease associations.
    Yao D; Zhan X; Zhan X; Kwoh CK; Li P; Wang J
    BMC Bioinformatics; 2020 Mar; 21(1):126. PubMed ID: 32216744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting binary, discrete and continued lncRNA-disease associations via a unified framework based on graph regression.
    Shi JY; Huang H; Zhang YN; Long YX; Yiu SM
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):65. PubMed ID: 29322937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LncRNA-disease association identification using graph auto-encoder and learning to rank.
    Liang Q; Zhang W; Wu H; Liu B
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GAERF: predicting lncRNA-disease associations by graph auto-encoder and random forest.
    Wu QW; Xia JF; Ni JC; Zheng CH
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33415333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting lncRNA-disease associations based on heterogeneous graph convolutional generative adversarial network.
    Lu Z; Zhong H; Tang L; Luo J; Zhou W; Liu L
    PLoS Comput Biol; 2023 Nov; 19(11):e1011634. PubMed ID: 38019786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting miRNA-disease association from heterogeneous information network with GraRep embedding model.
    Ji BY; You ZH; Cheng L; Zhou JR; Alghazzawi D; Li LP
    Sci Rep; 2020 Apr; 10(1):6658. PubMed ID: 32313121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LDAPred: A Method Based on Information Flow Propagation and a Convolutional Neural Network for the Prediction of Disease-Associated lncRNAs.
    Xuan P; Jia L; Zhang T; Sheng N; Li X; Li J
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31510011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations.
    Xuan P; Sheng N; Zhang T; Liu Y; Guo Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific topology and topological connection sensitivity enhanced graph learning for lncRNA-disease association prediction.
    Xuan P; Bai H; Cui H; Zhang X; Nakaguchi T; Zhang T
    Comput Biol Med; 2023 Sep; 164():107265. PubMed ID: 37531860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical graph attention network for miRNA-disease association prediction.
    Li Z; Zhong T; Huang D; You ZH; Nie R
    Mol Ther; 2022 Apr; 30(4):1775-1786. PubMed ID: 35121109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network.
    Pang S; Zhuang Y; Wang X; Wang F; Qiao S
    BMC Med Inform Decis Mak; 2021 Nov; 21(1):319. PubMed ID: 34789236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.