BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38167056)

  • 1. Multiple machine-learning tools identifying prognostic biomarkers for acute Myeloid Leukemia.
    Cheng Y; Yang X; Wang Y; Li Q; Chen W; Dai R; Zhang C
    BMC Med Inform Decis Mak; 2024 Jan; 24(1):2. PubMed ID: 38167056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A transient receptor potential channel-related model based on machine learning for evaluating tumor microenvironment and immunotherapeutic strategies in acute myeloid leukemia.
    Hua J; Ding T; Shao Y
    Front Immunol; 2022; 13():1040661. PubMed ID: 36591215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DLC1 deficiency at diagnosis predicts poor prognosis in acute myeloid leukemia.
    Li X; Qi J; Song X; Xu X; Pan T; Wang H; Yang J; Han Y
    Exp Hematol Oncol; 2022 Oct; 11(1):74. PubMed ID: 36258263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and verification of an endoplasmic reticulum stress-related prognostic model for endometrial cancer based on WGCNA and machine learning algorithms.
    Lin S; Wei C; Wei Y; Fan J
    Front Oncol; 2024; 14():1362891. PubMed ID: 38725627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Gene Signature Reveals Prognostic Model in Acute Myeloid Leukemia.
    Qu Y; Zhang S; Qu Y; Guo H; Wang S; Wang X; Huang T; Zhou H
    Front Genet; 2020; 11():566024. PubMed ID: 33193652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis.
    Wu Z; Chen H; Ke S; Mo L; Qiu M; Zhu G; Zhu W; Liu L
    Sci Rep; 2023 Oct; 13(1):16559. PubMed ID: 37783761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods.
    Wang X; Wan Q; Chen H; Li Y; Li X
    Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel 85-Gene Expression Signature Predicts Unfavorable Prognosis in Acute Myeloid Leukemia.
    Lai Y; Sheng L; Wang J; Zhou M; OuYang G
    Technol Cancer Res Treat; 2021; 20():15330338211004933. PubMed ID: 33784904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust biomarker screening from gene expression data by stable machine learning-recursive feature elimination methods.
    Li L; Ching WK; Liu ZP
    Comput Biol Chem; 2022 Oct; 100():107747. PubMed ID: 35932551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Union With Recursive Feature Elimination: A Feature Selection Framework to Improve the Classification Performance of Multicategory Causes of Death in Colorectal Cancer.
    Deng F; Zhao L; Yu N; Lin Y; Zhang L
    Lab Invest; 2024 Mar; 104(3):100320. PubMed ID: 38158124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of biomarkers for acute leukemia via machine learning-based stemness index.
    Zhang Y; Liu D; Li F; Zhao Z; Liu X; Gao D; Zhang Y; Li H
    Gene; 2021 Dec; 804():145903. PubMed ID: 34411647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of ischemic stroke diagnosis models based on machine learning.
    Yang WX; Wang FF; Pan YY; Xie JQ; Lu MH; You CG
    Front Neurol; 2022; 13():1014346. PubMed ID: 36545400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. m6A genotypes and prognostic signature for assessing the prognosis of patients with acute myeloid leukemia.
    Fu C; Kou R; Meng J; Jiang D; Zhong R; Dong M
    BMC Med Genomics; 2023 Aug; 16(1):191. PubMed ID: 37596597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival prediction in acute myeloid leukemia using gene expression profiling.
    Lai B; Lai Y; Zhang Y; Zhou M; OuYang G
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):57. PubMed ID: 35241089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIVEP3 cooperates with ferroptosis gene signatures to confer adverse prognosis in acute myeloid leukemia.
    Zhang X; Zhang X; Liu K; Li W; Wang J; Liu P; Ma W
    Cancer Med; 2022 Dec; 11(24):5050-5065. PubMed ID: 35535739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-based sub-network signatures unveil the potential for acute myeloid leukemia therapy.
    Shi M; Wu M; Pan P; Zhao R
    Mol Biosyst; 2014 Dec; 10(12):3290-7. PubMed ID: 25313005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Validation of a Novel Prognostic Model for Acute Myeloid Leukemia Based on Immune-Related Genes.
    Li R; Ding Z; Jin P; Wu S; Jiang G; Xiang R; Wang W; Jin Z; Li X; Xue K; Wu X; Li J
    Front Immunol; 2021; 12():639634. PubMed ID: 34025649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of seven novel ferroptosis-related long non-coding RNA signatures as a diagnostic biomarker for acute myeloid leukemia.
    Zheng Z; Wu W; Lin Z; Liu S; Chen Q; Jiang X; Xue Y; Lin D
    BMC Med Genomics; 2021 Sep; 14(1):236. PubMed ID: 34579730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel 10-gene ferroptosis-related prognostic signature in acute myeloid leukemia.
    Zhu K; Lang Z; Zhan Y; Tao Q; Yu Z; Chen L; Fan C; Jin Y; Yu K; Zhu B; Gao Y; Wang C; Jiang S; Shi Y
    Front Oncol; 2022; 12():1023040. PubMed ID: 36338716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated multiple microarray studies by robust rank aggregation to identify immune-associated biomarkers in Crohn's disease based on three machine learning methods.
    Chen ZA; Ma HH; Wang Y; Tian H; Mi JW; Yao DM; Yang CJ
    Sci Rep; 2023 Feb; 13(1):2694. PubMed ID: 36792688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.