These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 38167058)
1. Deep learning prediction of esophageal squamous cell carcinoma invasion depth from arterial phase enhanced CT images: a binary classification approach. Wu X; Wu H; Miao S; Cao G; Su H; Pan J; Xu Y BMC Med Inform Decis Mak; 2024 Jan; 24(1):3. PubMed ID: 38167058 [TBL] [Abstract][Full Text] [Related]
2. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
3. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Tokai Y; Yoshio T; Aoyama K; Horie Y; Yoshimizu S; Horiuchi Y; Ishiyama A; Tsuchida T; Hirasawa T; Sakakibara Y; Yamada T; Yamaguchi S; Fujisaki J; Tada T Esophagus; 2020 Jul; 17(3):250-256. PubMed ID: 31980977 [TBL] [Abstract][Full Text] [Related]
4. Human-Like Artificial Intelligent System for Predicting Invasion Depth of Esophageal Squamous Cell Carcinoma Using Magnifying Narrow-Band Imaging Endoscopy: A Retrospective Multicenter Study. Zhang L; Luo R; Tang D; Zhang J; Su Y; Mao X; Ye L; Yao L; Zhou W; Zhou J; Lu Z; Zhang M; Xu Y; Deng Y; Huang X; He C; Xiao Y; Wang J; Wu L; Li J; Zou X; Yu H Clin Transl Gastroenterol; 2023 Oct; 14(10):e00606. PubMed ID: 37289447 [TBL] [Abstract][Full Text] [Related]
5. Computed tomography scan as a tool to predict tumor T category in resectable esophageal squamous cell carcinoma. Li H; Chen TW; Zhang XM; Li ZL; Chen XL; Tang HJ; Huang XH; Chen N; Yang Q; Hu J Ann Thorac Surg; 2013 May; 95(5):1749-55. PubMed ID: 23506631 [TBL] [Abstract][Full Text] [Related]
6. Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Nakagawa K; Ishihara R; Aoyama K; Ohmori M; Nakahira H; Matsuura N; Shichijo S; Nishida T; Yamada T; Yamaguchi S; Ogiyama H; Egawa S; Kishida O; Tada T Gastrointest Endosc; 2019 Sep; 90(3):407-414. PubMed ID: 31077698 [TBL] [Abstract][Full Text] [Related]
7. Computed tomography-based radiomics analysis to predict lymphovascular invasion in esophageal squamous cell carcinoma. Peng H; Yang Q; Xue T; Chen Q; Li M; Duan S; Cai B; Feng F Br J Radiol; 2022 Feb; 95(1130):20210918. PubMed ID: 34908477 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the Diagnostic Performance of Endoscopic Ultrasonography After Conventional Endoscopy for the Evaluation of Esophageal Squamous Cell Carcinoma Invasion Depth. Ishihara R; Mizusawa J; Kushima R; Matsuura N; Yano T; Kataoka T; Fukuda H; Hanaoka N; Yoshio T; Abe S; Yamamoto Y; Nagata S; Ono H; Tamaoki M; Yoshida N; Takizawa K; Muto M JAMA Netw Open; 2021 Sep; 4(9):e2125317. PubMed ID: 34524432 [TBL] [Abstract][Full Text] [Related]
9. Retrospective Assessment of the Diagnostic Accuracy of the Depth of Invasion by Narrow Band Imaging Magnifying Endoscopy in Patients with Superficial Esophageal Squamous Cell Carcinoma. Katada C; Tanabe S; Wada T; Ishido K; Yano T; Furue Y; Kondo Y; Kawanishi N; Yamane S; Watanabe A; Azuma M; Koizumi W J Gastrointest Cancer; 2019 Jun; 50(2):292-297. PubMed ID: 29435906 [TBL] [Abstract][Full Text] [Related]
10. Quantitative parameters derived from dual-energy computed tomography for the preoperative prediction of early recurrence in patients with esophageal squamous cell carcinoma. Liu Y; Cheng F; Wang L; Du L; Shen H; Wang X; Zeng Z; Liu D; Tao J; Wu J; Zhang J Eur Radiol; 2023 Nov; 33(11):7419-7428. PubMed ID: 37314470 [TBL] [Abstract][Full Text] [Related]
11. Establishing a survival prediction model for esophageal squamous cell carcinoma based on CT and histopathological images. Wang J; Wu LL; Zhang Y; Ma G; Lu Y Phys Med Biol; 2021 Jul; 66(14):. PubMed ID: 34192686 [TBL] [Abstract][Full Text] [Related]
12. Endoscopic imaging modalities for diagnosing the invasion depth of superficial esophageal squamous cell carcinoma: a systematic review. Inoue T; Ishihara R; Shibata T; Suzuki K; Kitagawa Y; Miyazaki T; Yamaji T; Nemoto K; Oyama T; Muto M; Takeuchi H; Toh Y; Matsubara H; Mano M; Kono K; Kato K; Yoshida M; Kawakubo H; Booka E; Yamatsuji T; Kato H; Ito Y; Ishikawa H; Tsushima T; Kawachi H; Oyama T; Kojima T; Kuribayashi S; Makino T; Matsuda S; Doki Y; Esophagus; 2022 Jul; 19(3):375-383. PubMed ID: 35397101 [TBL] [Abstract][Full Text] [Related]
13. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
14. Integrating Preoperative Computed Tomography and Clinical Factors for Lymph Node Metastasis Prediction in Esophageal Squamous Cell Carcinoma by Feature-Wise Attentional Graph Neural Network. Ding M; Cui H; Li B; Zou B; Fan B; Ma L; Wang Z; Li W; Yu J; Wang L Int J Radiat Oncol Biol Phys; 2023 Jul; 116(3):676-689. PubMed ID: 36641040 [TBL] [Abstract][Full Text] [Related]
15. Low-dose spectral insufflation computed tomography protocol preoperatively optimized for T stage esophageal cancer - preliminary research experience. Zhou Y; Liu D; Hou P; Zha KJ; Wang F; Zhou K; He W; Gao JB World J Gastroenterol; 2018 Sep; 24(36):4197-4207. PubMed ID: 30271084 [TBL] [Abstract][Full Text] [Related]
16. Color information from linked color imaging is associated with invasion depth and vascular diameter in superficial esophageal squamous cell carcinoma. Kobayashi K; Miyahara R; Funasaka K; Furukawa K; Sawada T; Maeda K; Yamamura T; Ishikawa T; Ohno E; Nakamura M; Kawashima H; Nakaguro M; Okumura Y; Hirooka Y; Fujishiro M Dig Endosc; 2020 Jan; 32(1):65-73. PubMed ID: 31220372 [TBL] [Abstract][Full Text] [Related]
17. Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers. Zhu Y; Yao W; Xu BC; Lei YY; Guo QK; Liu LZ; Li HJ; Xu M; Yan J; Chang DD; Feng ST; Zhu ZH BMC Cancer; 2021 Oct; 21(1):1167. PubMed ID: 34717582 [TBL] [Abstract][Full Text] [Related]
18. A novel staging system based on deep learning for overall survival in patients with esophageal squamous cell carcinoma. Zhang H; Jiang X; Yu Q; Yu H; Xu C J Cancer Res Clin Oncol; 2023 Sep; 149(11):8935-8944. PubMed ID: 37154930 [TBL] [Abstract][Full Text] [Related]
19. A one-dimensional convolutional neural network based deep learning for high accuracy classification of transformation stages in esophageal squamous cell carcinoma tissue using micro-FTIR. Yang H; Li X; Zhang S; Li Y; Zhu Z; Shen J; Dai N; Zhou F Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122210. PubMed ID: 36508904 [TBL] [Abstract][Full Text] [Related]
20. Prediction of Individual Lymph Node Metastatic Status in Esophageal Squamous Cell Carcinoma Using Routine Computed Tomography Imaging: Comparison of Size-Based Measurements and Radiomics-Based Models. Xie C; Hu Y; Han L; Fu J; Vardhanabhuti V; Yang H Ann Surg Oncol; 2022 Dec; 29(13):8117-8126. PubMed ID: 36018524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]