These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 38167159)
1. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Iqbal MJ; Kabeer A; Abbas Z; Siddiqui HA; Calina D; Sharifi-Rad J; Cho WC Cell Commun Signal; 2024 Jan; 22(1):7. PubMed ID: 38167159 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Tebay LE; Robertson H; Durant ST; Vitale SR; Penning TM; Dinkova-Kostova AT; Hayes JD Free Radic Biol Med; 2015 Nov; 88(Pt B):108-146. PubMed ID: 26122708 [TBL] [Abstract][Full Text] [Related]
3. The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis. Zhou XL; Zhu CY; Wu ZG; Guo X; Zou W Oncogene; 2019 May; 38(21):4028-4046. PubMed ID: 30692632 [TBL] [Abstract][Full Text] [Related]
4. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases. Dovinova I; Kvandová M; Balis P; Gresova L; Majzunova M; Horakova L; Chan JY; Barancik M Physiol Res; 2020 Dec; 69(Suppl 4):S541-S553. PubMed ID: 33656904 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Panieri E; Saso L Antioxid Redox Signal; 2021 Jun; 34(18):1428-1483. PubMed ID: 33403898 [No Abstract] [Full Text] [Related]
6. Hepatocyte-specific NRF2 activation controls fibrogenesis and carcinogenesis in steatohepatitis. Mohs A; Otto T; Schneider KM; Peltzer M; Boekschoten M; Holland CH; Hudert CA; Kalveram L; Wiegand S; Saez-Rodriguez J; Longerich T; Hengstler JG; Trautwein C J Hepatol; 2021 Mar; 74(3):638-648. PubMed ID: 33342543 [TBL] [Abstract][Full Text] [Related]
7. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Fetoni AR; Paciello F; Rolesi R; Paludetti G; Troiani D Free Radic Biol Med; 2019 May; 135():46-59. PubMed ID: 30802489 [TBL] [Abstract][Full Text] [Related]
8. Reactive Oxygen Species and NRF2 Signaling, Friends or Foes in Cancer? Wang R; Liang L; Matsumoto M; Iwata K; Umemura A; He F Biomolecules; 2023 Feb; 13(2):. PubMed ID: 36830722 [TBL] [Abstract][Full Text] [Related]
9. [Selenium compounds in redox regulation of inflammation and apoptosis]. Rusetskaya NY; Fedotov IV; Koftina VA; Borodulin VB Biomed Khim; 2019 Apr; 65(3):165-179. PubMed ID: 31258141 [TBL] [Abstract][Full Text] [Related]
10. Cellular Modulators of the NRF2/KEAP1 Signaling Pathway in Prostate Cancer. Tossetta G; Fantone S; Marzioni D; Mazzucchelli R Front Biosci (Landmark Ed); 2023 Jul; 28(7):143. PubMed ID: 37525922 [TBL] [Abstract][Full Text] [Related]
11. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress. Habib E; Linher-Melville K; Lin HX; Singh G Redox Biol; 2015 Aug; 5():33-42. PubMed ID: 25827424 [TBL] [Abstract][Full Text] [Related]
12. Dysregulation of Nrf2/Keap1 Redox Pathway in Diabetes Affects Multipotency of Stromal Cells. Rabbani PS; Soares MA; Hameedi SG; Kadle RL; Mubasher A; Kowzun M; Ceradini DJ Diabetes; 2019 Jan; 68(1):141-155. PubMed ID: 30352880 [TBL] [Abstract][Full Text] [Related]
13. Biochemical and cellular basis of oxidative stress: Implications for disease onset. Aramouni K; Assaf R; Shaito A; Fardoun M; Al-Asmakh M; Sahebkar A; Eid AH J Cell Physiol; 2023 Sep; 238(9):1951-1963. PubMed ID: 37436042 [TBL] [Abstract][Full Text] [Related]
14. Amelioration of Oxidative Stress in Caco-2 Cells Treated with Pro-inflammatory Proteins by Chlorogenic Acid Isomers via Activation of the Nrf2-Keap1-ARE-Signaling Pathway. Liang N; Kitts DD J Agric Food Chem; 2018 Oct; 66(42):11008-11017. PubMed ID: 30259744 [TBL] [Abstract][Full Text] [Related]
15. The redox biology network in cancer pathophysiology and therapeutics. Manda G; Isvoranu G; Comanescu MV; Manea A; Debelec Butuner B; Korkmaz KS Redox Biol; 2015 Aug; 5():347-357. PubMed ID: 26122399 [TBL] [Abstract][Full Text] [Related]
16. PALB2 interacts with KEAP1 to promote NRF2 nuclear accumulation and function. Ma J; Cai H; Wu T; Sobhian B; Huo Y; Alcivar A; Mehta M; Cheung KL; Ganesan S; Kong AN; Zhang DD; Xia B Mol Cell Biol; 2012 Apr; 32(8):1506-17. PubMed ID: 22331464 [TBL] [Abstract][Full Text] [Related]
17. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Tocmo R; Parkin K Free Radic Biol Med; 2019 Nov; 143():164-175. PubMed ID: 31349040 [TBL] [Abstract][Full Text] [Related]
18. Nrf2 signaling pathway in trace metal carcinogenesis: A cross-talk between oxidative stress and angiogenesis. Emami MH; Sereshki N; Malakoutikhah Z; Dehkordi SAE; Fahim A; Mohammadzadeh S; Maghool F Comp Biochem Physiol C Toxicol Pharmacol; 2022 Apr; 254():109266. PubMed ID: 35031482 [TBL] [Abstract][Full Text] [Related]
19. Neutrophil elastase inhibitor suppresses oxidative stress in obese asthmatic rats by activating Keap1/Nrf2 signaling pathway. Zheng JQ; Zhang GR; Li J; Bi HW Eur Rev Med Pharmacol Sci; 2019 Jan; 23(1):361-369. PubMed ID: 30657578 [TBL] [Abstract][Full Text] [Related]
20. Targeting the KEAP1-NRF2 System to Prevent Kidney Disease Progression. Nezu M; Suzuki N; Yamamoto M Am J Nephrol; 2017; 45(6):473-483. PubMed ID: 28502971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]