These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38167300)

  • 1. Spectroscopy and dynamics of the hydrated electron at the water/air interface.
    Jordan CJC; Coons MP; Herbert JM; Verlet JRR
    Nat Commun; 2024 Jan; 15(1):182. PubMed ID: 38167300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hydrated Electron.
    Herbert JM; Coons MP
    Annu Rev Phys Chem; 2017 May; 68():447-472. PubMed ID: 28375692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species.
    Coons MP; You ZQ; Herbert JM
    J Am Chem Soc; 2016 Aug; 138(34):10879-86. PubMed ID: 27505354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations.
    Uhlig F; Herbert JM; Coons MP; Jungwirth P
    J Phys Chem A; 2014 Sep; 118(35):7507-15. PubMed ID: 24576141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nature of Excess Hydrated Proton at the Water-Air Interface.
    Das S; Imoto S; Sun S; Nagata Y; Backus EHG; Bonn M
    J Am Chem Soc; 2020 Jan; 142(2):945-952. PubMed ID: 31867949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.
    Matsuzaki K; Kusaka R; Nihonyanagi S; Yamaguchi S; Nagata T; Tahara T
    J Am Chem Soc; 2016 Jun; 138(24):7551-7. PubMed ID: 27281547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction Energy Analysis of Monovalent Inorganic Anions in Bulk Water Versus Air/Water Interface.
    Herbert JM; Paul SK
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface.
    Nowakowski PJ; Woods DA; Verlet JRR
    J Phys Chem Lett; 2016 Oct; 7(20):4079-4085. PubMed ID: 27684095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photooxidation of the Phenolate Anion is Accelerated at the Water/Air Interface.
    Jordan CJC; Lowe EA; Verlet JRR
    J Am Chem Soc; 2022 Aug; 144(31):14012-14015. PubMed ID: 35900260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface studied by vibrational sum frequency spectroscopy and molecular dynamics.
    Harper K; Minofar B; Sierra-Hernandez MR; Casillas-Ituarte NN; Roeselova M; Allen HC
    J Phys Chem A; 2009 Mar; 113(10):2015-24. PubMed ID: 19195991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical equilibria of aqueous ammonium-carboxylate systems in aqueous bulk, close to and at the water-air interface.
    Blanco YS; Topel Ö; Bajnóczi ÉG; Werner J; Björneholm O; Persson I
    Phys Chem Chem Phys; 2019 Jun; 21(23):12434-12445. PubMed ID: 31143906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular structure and dynamics of water at the water-air interface studied with surface-specific vibrational spectroscopy.
    Bonn M; Nagata Y; Backus EH
    Angew Chem Int Ed Engl; 2015 May; 54(19):5560-76. PubMed ID: 25877765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Metal-Oxide Nanoparticle-Aqueous Solution Interface Studied by Liquid-Microjet Photoemission.
    Ali H; Winter B; Seidel R
    Acc Chem Res; 2023 Jul; 56(13):1687-1697. PubMed ID: 37310757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of iron-isotope fractionation between hematite (alpha-Fe2O3) and ferric and ferrous iron in aqueous solution from density functional theory.
    Rustad JR; Dixon DA
    J Phys Chem A; 2009 Nov; 113(44):12249-55. PubMed ID: 19817377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Nature of Hydrated Protons on Platinum Surfaces.
    Kim Y; Noh C; Jung Y; Kang H
    Chemistry; 2017 Dec; 23(69):17566-17575. PubMed ID: 28925104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface.
    Coons MP; Herbert JM
    J Chem Phys; 2018 Jun; 148(22):222834. PubMed ID: 29907040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Study of the Two-Dimensional Vibrational Sum Frequency Generation Spectroscopy of the Air-Water Interface at Varying Temperature and Its Connections to the Interfacial Structure and Dynamics.
    Malik R; Chandra A; Das B; Chandra A
    J Phys Chem B; 2023 Dec; 127(50):10880-10895. PubMed ID: 38055625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron at the Surface of Water: Dehydrated or Not?
    Uhlig F; Marsalek O; Jungwirth P
    J Phys Chem Lett; 2013 Jan; 4(2):338-43. PubMed ID: 26283445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femtosecond time-resolved electronic sum-frequency generation spectroscopy: a new method to investigate ultrafast dynamics at liquid interfaces.
    Sekiguchi K; Yamaguchi S; Tahara T
    J Chem Phys; 2008 Mar; 128(11):114715. PubMed ID: 18361609
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Dasgupta S; Rana B; Herbert JM
    J Phys Chem B; 2019 Sep; 123(38):8074-8085. PubMed ID: 31442044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.