These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Ten Years of VASARI Glioma Features: Systematic Review and Meta-Analysis of Their Impact and Performance. Azizova A; Prysiazhniuk Y; Wamelink IJHG; Petr J; Barkhof F; Keil VC AJNR Am J Neuroradiol; 2024 Aug; 45(8):1053-1062. PubMed ID: 38937115 [TBL] [Abstract][Full Text] [Related]
4. Prediction of Park YW; Han K; Ahn SS; Bae S; Choi YS; Chang JH; Kim SH; Kang SG; Lee SK AJNR Am J Neuroradiol; 2018 Jan; 39(1):37-42. PubMed ID: 29122763 [TBL] [Abstract][Full Text] [Related]
5. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: a consecutive L-[methyl-11C] methionine cohort study with two PET scanners. Zhou W; Wen J; Huang Q; Zeng Y; Zhou Z; Zhu Y; Chen L; Guan Y; Xie F; Zhuang D; Hua T Eur J Nucl Med Mol Imaging; 2024 Apr; 51(5):1423-1435. PubMed ID: 38110710 [TBL] [Abstract][Full Text] [Related]
8. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613 [TBL] [Abstract][Full Text] [Related]
9. MRI characteristics of H3 G34-mutant diffuse hemispheric gliomas and possible differentiation from IDH-wild-type glioblastomas in adolescents and young adults. Shao H; Gong J; Su X; Chen N; Li S; Yang X; Zhang S; Huang Z; Hu W; Gong Q; Liu Y; Yue Q J Neurosurg Pediatr; 2024 Mar; 33(3):236-244. PubMed ID: 38157540 [TBL] [Abstract][Full Text] [Related]
10. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Paech D; Windschuh J; Oberhollenzer J; Dreher C; Sahm F; Meissner JE; Goerke S; Schuenke P; Zaiss M; Regnery S; Bickelhaupt S; Bäumer P; Bendszus M; Wick W; Unterberg A; Bachert P; Ladd ME; Schlemmer HP; Radbruch A Neuro Oncol; 2018 Nov; 20(12):1661-1671. PubMed ID: 29733378 [TBL] [Abstract][Full Text] [Related]
11. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Zhou H; Vallières M; Bai HX; Su C; Tang H; Oldridge D; Zhang Z; Xiao B; Liao W; Tao Y; Zhou J; Zhang P; Yang L Neuro Oncol; 2017 Jun; 19(6):862-870. PubMed ID: 28339588 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive Assessment of O(6)-Methylguanine-DNA Methyltransferase Promoter Methylation Status in World Health Organization Grade II-IV Glioma Using Histogram Analysis of Inflow-Based Vascular-Space-Occupancy Combined with Structural Magnetic Resonance Imaging. He W; Li X; Hua J; Liao S; Guo L; Xiao X; Liu X; Zhou J; Wang W; Xu Y; Wu Y J Magn Reson Imaging; 2021 Jul; 54(1):227-236. PubMed ID: 33590929 [TBL] [Abstract][Full Text] [Related]
13. World Health Organization Grade II/III Glioma Molecular Status: Prediction by MRI Morphologic Features and Apparent Diffusion Coefficient. Maynard J; Okuchi S; Wastling S; Busaidi AA; Almossawi O; Mbatha W; Brandner S; Jaunmuktane Z; Koc AM; Mancini L; Jäger R; Thust S Radiology; 2020 Jul; 296(1):111-121. PubMed ID: 32315266 [TBL] [Abstract][Full Text] [Related]
14. Predictive machine learning models based on VASARI features for WHO grading, isocitrate dehydrogenase mutation, and 1p19q co-deletion status: a multicenter study. Zhao W; Xie C; Hanjiaerbieke K; Xu R; Pahati T; Wang S; Li J; Wang Y Am J Cancer Res; 2024; 14(8):3826-3841. PubMed ID: 39267671 [TBL] [Abstract][Full Text] [Related]
15. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
16. Conventional MRI features can predict the molecular subtype of adult grade 2-3 intracranial diffuse gliomas. Lasocki A; Buckland ME; Drummond KJ; Wei H; Xie J; Christie M; Neal A; Gaillard F Neuroradiology; 2022 Dec; 64(12):2295-2305. PubMed ID: 35606654 [TBL] [Abstract][Full Text] [Related]
17. Machine learning-based radiomic, clinical and semantic feature analysis for predicting overall survival and MGMT promoter methylation status in patients with glioblastoma. Lu Y; Patel M; Natarajan K; Ughratdar I; Sanghera P; Jena R; Watts C; Sawlani V Magn Reson Imaging; 2020 Dec; 74():161-170. PubMed ID: 32980505 [TBL] [Abstract][Full Text] [Related]
18. The T2-FLAIR-mismatch sign as an imaging biomarker for IDH and 1p/19q status in diffuse low-grade gliomas: a systematic review with a Bayesian approach to evaluation of diagnostic test performance. Goyal A; Yolcu YU; Goyal A; Kerezoudis P; Brown DA; Graffeo CS; Goncalves S; Burns TC; Parney IF Neurosurg Focus; 2019 Dec; 47(6):E13. PubMed ID: 31786548 [TBL] [Abstract][Full Text] [Related]
19. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas. Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598 [TBL] [Abstract][Full Text] [Related]