These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38167626)

  • 1. A robust deep learning detector for sleep spindles and K-complexes: towards population norms.
    Tapia-Rivas NI; Estévez PA; Cortes-Briones JA
    Sci Rep; 2024 Jan; 14(1):263. PubMed ID: 38167626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal.
    Chambon S; Thorey V; Arnal PJ; Mignot E; Gramfort A
    J Neurosci Methods; 2019 Jun; 321():64-78. PubMed ID: 30946878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sleep spindle detection algorithm that emulates human expert spindle scoring.
    Lacourse K; Delfrate J; Beaudry J; Peppard P; Warby SC
    J Neurosci Methods; 2019 Mar; 316():3-11. PubMed ID: 30107208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond K-complex binary scoring during sleep: probabilistic classification using deep learning.
    Lechat B; Hansen K; Catcheside P; Zajamsek B
    Sleep; 2020 Oct; 43(10):. PubMed ID: 32301485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust two-stage sleep spindle detection approach using single-channel EEG.
    Jiang D; Ma Y; Wang Y
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33326950
    [No Abstract]   [Full Text] [Related]  

  • 6. An energy screening and morphology characterization-based hybrid expert scheme for automatic identification of micro-sleep event K-complex.
    Zhao X; Chen C; Zhou W; Wang Y; Fan J; Wang Z; Akbarzadeh S; Chen W
    Comput Methods Programs Biomed; 2021 Apr; 201():105955. PubMed ID: 33556760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The visual scoring of sleep and arousal in infants and children.
    Grigg-Damberger M; Gozal D; Marcus CL; Quan SF; Rosen CL; Chervin RD; Wise M; Picchietti DL; Sheldon SH; Iber C
    J Clin Sleep Med; 2007 Mar; 3(2):201-40. PubMed ID: 17557427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RobustSleepNet: Transfer Learning for Automated Sleep Staging at Scale.
    Guillot A; Thorey V
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1441-1451. PubMed ID: 34288872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human K-complex: Insights from combined scalp-intracranial EEG recordings.
    Latreille V; von Ellenrieder N; Peter-Derex L; Dubeau F; Gotman J; Frauscher B
    Neuroimage; 2020 Jun; 213():116748. PubMed ID: 32194281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of K-complexes in EEG waveform images using faster R-CNN and deep transfer learning.
    Khasawneh N; Fraiwan M; Fraiwan L
    BMC Med Inform Decis Mak; 2022 Nov; 22(1):297. PubMed ID: 36397034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expert-level automated sleep staging of long-term scalp electroencephalography recordings using deep learning.
    Abou Jaoude M; Sun H; Pellerin KR; Pavlova M; Sarkis RA; Cash SS; Westover MB; Lam AD
    Sleep; 2020 Nov; 43(11):. PubMed ID: 32478820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waveform detection by deep learning reveals multi-area spindles that are selectively modulated by memory load.
    Mofrad MH; Gilmore G; Koller D; Mirsattari SM; Burneo JG; Steven DA; Khan AR; Suller Marti A; Muller L
    Elife; 2022 Jun; 11():. PubMed ID: 35766286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal dependency in automatic sleep scoring via deep learning based architectures: An empirical study.
    Fiorillo L; Wand M; Marino I; Favaro P; Faraci FD
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3509-3512. PubMed ID: 33018760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection.
    Toma TI; Choi S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sleep spindles, K-complexes, limb movements and sleep stage proportions may be biomarkers for amnestic mild cognitive impairment and Alzheimer's disease.
    Liu S; Pan J; Tang K; Lei Q; He L; Meng Y; Cai X; Li Z
    Sleep Breath; 2020 Jun; 24(2):637-651. PubMed ID: 31786748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-spindle: An automated sleep spindle detection system for analysis of infant sleep spindles.
    Wei L; Ventura S; Ryan MA; Mathieson S; Boylan GB; Lowery M; Mooney C
    Comput Biol Med; 2022 Nov; 150():106096. PubMed ID: 36162199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a novel automatic sleep spindle detector with high performance during sleep in middle aged subjects.
    Wendt SL; Christensen JA; Kempfner J; Leonthin HL; Jennum P; Sorensen HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4250-3. PubMed ID: 23366866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic detection of K-complexes: validation in normals and dysthymic patients.
    da Rosa AC; Paiva T
    Sleep; 1993 Apr; 16(3):239-48. PubMed ID: 8506457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spindles are highly heritable as identified by different spindle detectors.
    Goldschmied JR; Lacourse K; Maislin G; Delfrate J; Gehrman P; Pack FM; Staley B; Pack AI; Younes M; Kuna ST; Warby SC
    Sleep; 2021 Apr; 44(4):. PubMed ID: 33165618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TinySleepNet: An Efficient Deep Learning Model for Sleep Stage Scoring based on Raw Single-Channel EEG.
    Supratak A; Guo Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():641-644. PubMed ID: 33018069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.