These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. PICK1 facilitates lasting reduction in GluA2 concentration in the hippocampus during chronic epilepsy. Lorgen JØ; Egbenya DL; Hammer J; Davanger S Epilepsy Res; 2017 Nov; 137():25-32. PubMed ID: 28888867 [TBL] [Abstract][Full Text] [Related]
3. Neonatal exposure to sevoflurane caused cognitive deficits by dysregulating SK2 channels and GluA2-lacking AMPA receptors in juvenile rat hippocampus. Yu X; Zhang F; Shi J Neuropharmacology; 2018 Oct; 141():66-75. PubMed ID: 30142400 [TBL] [Abstract][Full Text] [Related]
4. Ethanol dose-dependently elicits opposing regulatory effects on hippocampal AMPA receptor GluA2 subunits through a zeta inhibitory peptide-sensitive kinase in adolescent and adult Sprague-Dawley rats. Santerre JL; Rogow JA; Kolitz EB; Pal R; Landin JD; Gigante ED; Werner DF Neuroscience; 2014 Nov; 280():50-9. PubMed ID: 25218807 [TBL] [Abstract][Full Text] [Related]
5. Risperidone impedes glutamate excitotoxicity in a valproic acid rat model of autism: Role of ADAR2 in AMPA GluA2 RNA editing. Habib MZ; Elnahas EM; Aboul-Ela YM; Ebeid MA; Tarek M; Sadek DR; Negm EA; Abdelhakam DA; Aboul-Fotouh S Eur J Pharmacol; 2023 Sep; 955():175916. PubMed ID: 37460052 [TBL] [Abstract][Full Text] [Related]
6. M1 muscarinic receptors facilitate hippocampus-dependent cognitive flexibility via modulating GluA2 subunit of AMPA receptors. Xiong CH; Liu MG; Zhao LX; Chen MW; Tang L; Yan YH; Chen HZ; Qiu Y Neuropharmacology; 2019 Mar; 146():242-251. PubMed ID: 30529302 [TBL] [Abstract][Full Text] [Related]
7. Influence of early life status epilepticus on the developmental expression profile of the GluA2 subunit of AMPA receptors. Szczurowska E; Ergang P; Kubová H; Druga R; Salaj M; Mareš P Exp Neurol; 2016 Sep; 283(Pt A):97-109. PubMed ID: 27288240 [TBL] [Abstract][Full Text] [Related]
8. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. Taoro-Gonzalez L; Arenas YM; Cabrera-Pastor A; Felipo V J Neuroinflammation; 2018 Feb; 15(1):36. PubMed ID: 29422059 [TBL] [Abstract][Full Text] [Related]
9. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Egbenya DL; Hussain S; Lai YC; Xia J; Anderson AE; Davanger S Mol Cell Neurosci; 2018 Oct; 92():93-103. PubMed ID: 30064010 [TBL] [Abstract][Full Text] [Related]
10. Distinct subunit-specific α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking mechanisms in cultured cortical and hippocampal neurons in response to oxygen and glucose deprivation. Blanco-Suarez E; Hanley JG J Biol Chem; 2014 Feb; 289(8):4644-51. PubMed ID: 24403083 [TBL] [Abstract][Full Text] [Related]
12. Hippocampal AMPA autoreceptors positively coupled to NMDA autoreceptors traffic in a constitutive manner and undergo adaptative changes following enriched environment training. Summa M; Di Prisco S; Grilli M; Marchi M; Pittaluga A Neuropharmacology; 2011 Dec; 61(8):1282-90. PubMed ID: 21820454 [TBL] [Abstract][Full Text] [Related]
13. Plasma membrane insertion of the AMPA receptor GluA2 subunit is regulated by NSF binding and Q/R editing of the ion pore. Araki Y; Lin DT; Huganir RL Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11080-5. PubMed ID: 20534470 [TBL] [Abstract][Full Text] [Related]
14. Elevated glucose concentration changes the content and cellular localization of AMPA receptors in the retina but not in the hippocampus. Castilho AF; Liberal JT; Baptista FI; Gaspar JM; Carvalho AL; Ambrósio AF Neuroscience; 2012 Sep; 219():23-32. PubMed ID: 22659015 [TBL] [Abstract][Full Text] [Related]
15. The maintenance of long-term memory in the hippocampus depends on the interaction between N-ethylmaleimide-sensitive factor and GluA2. Migues PV; Hardt O; Finnie P; Wang YW; Nader K Hippocampus; 2014 Sep; 24(9):1112-9. PubMed ID: 24753224 [TBL] [Abstract][Full Text] [Related]
16. Protection of cochlear synapses from noise-induced excitotoxic trauma by blockade of Ca Hu N; Rutherford MA; Green SH Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3828-3838. PubMed ID: 32015128 [TBL] [Abstract][Full Text] [Related]
17. Disruption of the GluA2/GAPDH complex using TAT-GluA2NT1-3-2 peptide protects against AMPAR-mediated excitotoxicity after epilepsy. Zhang J; Qiao N; Ding X; Wang J Neuroreport; 2018 Mar; 29(5):432-439. PubMed ID: 29489588 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of inwardly rectifying AMPA receptors at silent synapses during hippocampal long-term potentiation. Morita D; Rah JC; Isaac JT Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130156. PubMed ID: 24298157 [TBL] [Abstract][Full Text] [Related]
19. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. Chen Z; Xiong C; Pancyr C; Stockwell J; Walz W; Cayabyab FS J Neurosci; 2014 Jul; 34(29):9621-43. PubMed ID: 25031403 [TBL] [Abstract][Full Text] [Related]
20. Differential trafficking of AMPA receptors following activation of NMDA receptors and mGluRs. Sanderson TM; Collingridge GL; Fitzjohn SM Mol Brain; 2011 Jul; 4():30. PubMed ID: 21794146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]