These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38167745)

  • 1. Metal exsolution from perovskite-based anodes in solid oxide fuel cells.
    Zhu S; Fan J; Li Z; Wu J; Xiao M; Du P; Wang X; Jia L
    Chem Commun (Camb); 2024 Jan; 60(9):1062-1071. PubMed ID: 38167745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Exsolution to Enhance the Catalytic Activity of Electrodes in Solid Oxide Fuel Cells.
    Cao T; Kwon O; Gorte RJ; Vohs JM
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33297343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exsolution of Ni Nanoparticles from A-Site-Deficient Layered Double Perovskites for Dry Reforming of Methane and as an Anode Material for a Solid Oxide Fuel Cell.
    Managutti PB; Tymen S; Liu X; Hernandez O; Prestipino C; Le Gal La Salle A; Paul S; Jalowiecki-Duhamel L; Dorcet V; Billard A; Briois P; Bahout M
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35719-35728. PubMed ID: 34288641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Interface Structure of the Exsolved Co-Fe Alloy Nanoparticles from Double Perovskite and Its Application in Solid Oxide Fuel Cells.
    Du Z; Gong Y; Zhao H; Zhang Y; Yi S; Gu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3287-3294. PubMed ID: 33400481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Direct Hydrocarbon Solid Oxide Fuel Cells with Exsolved Anode Nanocatalysts.
    Wang T; Wang R; Xie X; Chang S; Wei T; Dong D; Wang Z
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56735-56742. PubMed ID: 36515640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lanthanum Ferrites-Based Exsolved Perovskites as Fuel-Flexible Anode for Solid Oxide Fuel Cells.
    Lo Faro M; Campagna Zignani S; Aricò AS
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32698468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Electrochemical Performance of Perovskite Anodes through
    Sun Z; Fan W; Bai Y; Wu K; Cheng Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29755-29763. PubMed ID: 34137578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exsolution on perovskite oxides: morphology and anchorage of nanoparticles.
    Ruh T; Berkovec D; Schrenk F; Rameshan C
    Chem Commun (Camb); 2023 Mar; 59(27):3948-3956. PubMed ID: 36916176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exsolution of Embedded Nanoparticles in Defect Engineered Perovskite Layers.
    Weber ML; Wilhelm M; Jin L; Breuer U; Dittmann R; Waser R; Guillon O; Lenser C; Gunkel F
    ACS Nano; 2021 Mar; 15(3):4546-4560. PubMed ID: 33635643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. B-Site Super-Excess Design Sr
    Song L; Chen D; Pan J; Hu X; Shen X; Huan Y; Wei T
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48296-48303. PubMed ID: 37812387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Highly Efficient and Robust Perovskite Anode with Iron-Palladium Co-exsolutions for Intermediate-Temperature Solid-Oxide Fuel Cells.
    Li J; Wei B; Yue X; Lü Z
    ChemSusChem; 2018 Aug; 11(15):2593-2603. PubMed ID: 29851249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Direct-Ammonia Solid Oxide Fuel Cells.
    Song Y; Li H; Xu M; Yang G; Wang W; Ran R; Zhou W; Shao Z
    Small; 2020 Jul; 16(28):e2001859. PubMed ID: 32510184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exsolution Modeling and Control to Improve the Catalytic Activity of Nanostructured Electrodes.
    Kim YH; Jeong H; Won BR; Myung JH
    Adv Mater; 2023 Apr; 35(16):e2208984. PubMed ID: 36691762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of Multifunctional Nanoarchitectures in One Step on a Composite Fuel Catalyst through In Situ Exsolution of La
    Wu X; Yu Y; Chen Y; Li L; Ma ZF; Yin YM
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34890-34900. PubMed ID: 32657114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Transition Engineering of Host Perovskite toward Optimal Exsolution-facilitated Catalysts for Carbon Dioxide Electrolysis.
    Zhang BW; Zhu MN; Gao MR; Chen J; Xi X; Shen J; Feng RF; Semagina N; Duan N; Zeng H; Luo JL
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202305552. PubMed ID: 37220309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-Exsolution of Ni-Based Alloy Catalysts for the Valorization of Carbon Dioxide and Methane.
    Najimu M; Jo S; Gilliard-AbdulAziz KL
    Acc Chem Res; 2023 Nov; 56(22):3132-3141. PubMed ID: 37939260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistically Promoting Coking Resistance of a La
    Tang Y; Wang H; Wang R; Liu Q; Yan Z; Xu L; Liu X
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):44002-44014. PubMed ID: 36106728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies.
    Kim YH; Jeong H; Won BR; Jeon H; Park CH; Park D; Kim Y; Lee S; Myung JH
    Nanomicro Lett; 2023 Nov; 16(1):33. PubMed ID: 38015283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles.
    Hua B; Li M; Sun YF; Li JH; Luo JL
    ChemSusChem; 2017 Sep; 10(17):3333-3341. PubMed ID: 28646521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites.
    Kwon O; Sengodan S; Kim K; Kim G; Jeong HY; Shin J; Ju YW; Han JW; Kim G
    Nat Commun; 2017 Jun; 8():15967. PubMed ID: 28656965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.