BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38167824)

  • 21. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy.
    Li E; Huang X; Zhang G; Liang T
    J Exp Clin Cancer Res; 2021 Sep; 40(1):279. PubMed ID: 34479614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immune Escape in Prostate Cancer: Known and Predicted Mechanisms and Targets.
    Reva BA; Omelchenko T; Nair SS; Tewari AK
    Urol Clin North Am; 2020 Nov; 47(4S):e9-e16. PubMed ID: 33446324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy.
    Prokhnevska N; Emerson DA; Kissick HT; Redmond WL
    Adv Exp Med Biol; 2019; 1210():121-147. PubMed ID: 31900908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks.
    Meng L; Wu H; Wu J; Ding P; He J; Sang M; Liu L
    Cell Death Dis; 2024 Jan; 15(1):3. PubMed ID: 38177102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy.
    Zhang C; Liu Y
    Front Immunol; 2020; 11():1295. PubMed ID: 32714324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Emergence of Immune-checkpoint Inhibitors in Colorectal Cancer Therapy.
    Ghidini M; Fusco N; Salati M; Khakoo S; Tomasello G; Petrelli F; Trapani D; Petrillo A
    Curr Drug Targets; 2021; 22(9):1021-1033. PubMed ID: 33563194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity.
    Chen SH; Dominik PK; Stanfield J; Ding S; Yang W; Kurd N; Llewellyn R; Heyen J; Wang C; Melton Z; Van Blarcom T; Lindquist KC; Chaparro-Riggers J; Salek-Ardakani S
    J Immunother Cancer; 2021 Oct; 9(10):. PubMed ID: 34599020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prostate Cancer Immunotherapy-Finally in From the Cold?
    Runcie KD; Dallos MC
    Curr Oncol Rep; 2021 Jun; 23(8):88. PubMed ID: 34125308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the spectrum of immune checkpoints in prostate cancer.
    Sena LA; Denmeade SR; Antonarakis ES
    Expert Rev Clin Pharmacol; 2021 Oct; 14(10):1253-1266. PubMed ID: 34263692
    [No Abstract]   [Full Text] [Related]  

  • 31. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.
    Hack SP; Zhu AX; Wang Y
    Front Immunol; 2020; 11():598877. PubMed ID: 33250900
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cutting-edge progress of immune-checkpoint blockade in lung cancer.
    Zhou F; Qiao M; Zhou C
    Cell Mol Immunol; 2021 Feb; 18(2):279-293. PubMed ID: 33177696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer.
    Stultz J; Fong L
    Prostate Cancer Prostatic Dis; 2021 Sep; 24(3):697-717. PubMed ID: 33820953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade.
    Genova C; Dellepiane C; Carrega P; Sommariva S; Ferlazzo G; Pronzato P; Gangemi R; Filaci G; Coco S; Croce M
    Front Immunol; 2021; 12():799455. PubMed ID: 35069581
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
    Pérez-Ruiz E; Melero I; Kopecka J; Sarmento-Ribeiro AB; García-Aranda M; De Las Rivas J
    Drug Resist Updat; 2020 Dec; 53():100718. PubMed ID: 32736034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunotherapy for metastatic prostate cancer: immuno-cold or the tip of the iceberg?
    Laccetti AL; Subudhi SK
    Curr Opin Urol; 2017 Nov; 27(6):566-571. PubMed ID: 28825923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy.
    Wei G; Zhang H; Zhao H; Wang J; Wu N; Li L; Wu J; Zhang D
    Cancer Lett; 2021 Jul; 511():68-76. PubMed ID: 33957184
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation.
    Wu M; Huang Q; Xie Y; Wu X; Ma H; Zhang Y; Xia Y
    J Hematol Oncol; 2022 Mar; 15(1):24. PubMed ID: 35279217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies.
    Liao L; Xu H; Zhao Y; Zheng X
    Front Med; 2023 Oct; 17(5):805-822. PubMed ID: 37897562
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy.
    Harber J; Kamata T; Pritchard C; Fennell D
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34518291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.