BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38168315)

  • 1. Unfolding and De-confounding: Biologically meaningful causal inference from longitudinal multi-omic networks using METALICA.
    Ruiz-Perez D; Gimon I; Sazal M; Mathee K; Narasimhan G
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Bayesian Networks for Integrating Multi-omics Time Series Microbiome Data.
    Ruiz-Perez D; Lugo-Martinez J; Bourguignon N; Mathee K; Lerner B; Bar-Joseph Z; Narasimhan G
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33785573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges, Strategies, and Perspectives for Reference-Independent Longitudinal Multi-Omic Microbiome Studies.
    Martínez Arbas S; Busi SB; Queirós P; de Nies L; Herold M; May P; Wilmes P; Muller EEL; Narayanasamy S
    Front Genet; 2021; 12():666244. PubMed ID: 34194470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Causal effects in microbiomes using interventional calculus.
    Sazal M; Stebliankin V; Mathee K; Yoo C; Narasimhan G
    Sci Rep; 2021 Mar; 11(1):5724. PubMed ID: 33707536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omic integration of microbiome data for identifying disease-associated modules.
    Muller E; Shiryan I; Borenstein E
    bioRxiv; 2024 Jan; ():. PubMed ID: 37461534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified feature association networks through integration of transcriptomic and proteomic data.
    McClure RS; Wendler JP; Adkins JN; Swanstrom J; Baric R; Kaiser BLD; Oxford KL; Waters KM; McDermott JE
    PLoS Comput Biol; 2019 Sep; 15(9):e1007241. PubMed ID: 31527878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Essential Regression: A generalizable framework for inferring causal latent factors from multi-omic datasets.
    Bing X; Lovelace T; Bunea F; Wegkamp M; Kasturi SP; Singh H; Benos PV; Das J
    Patterns (N Y); 2022 May; 3(5):100473. PubMed ID: 35607614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-omic approaches for host-microbiome data integration.
    Chetty A; Blekhman R
    Gut Microbes; 2024; 16(1):2297860. PubMed ID: 38166610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.
    Noecker C; Eng A; Srinivasan S; Theriot CM; Young VB; Jansson JK; Fredricks DN; Borenstein E
    mSystems; 2016; 1(1):. PubMed ID: 27239563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endohyphal microbiome: current progress and challenges for scaling down integrative multi-omic microbiome research.
    Kelliher JM; Robinson AJ; Longley R; Johnson LYD; Hanson BT; Morales DP; Cailleau G; Junier P; Bonito G; Chain PSG
    Microbiome; 2023 Aug; 11(1):192. PubMed ID: 37626434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic interaction network inference from longitudinal microbiome data.
    Lugo-Martinez J; Ruiz-Perez D; Narasimhan G; Bar-Joseph Z
    Microbiome; 2019 Apr; 7(1):54. PubMed ID: 30940197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches leveraging integrated connections of multi-omic data toward clinical applications.
    Demirel HC; Arici MK; Tuncbag N
    Mol Omics; 2022 Jan; 18(1):7-18. PubMed ID: 34734935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Practical Guide to Inferring Multi-Omics Networks in Plant Systems.
    Clark NM; Hurgobin B; Kelley DR; Lewsey MG; Walley JW
    Methods Mol Biol; 2023; 2698():233-257. PubMed ID: 37682479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation.
    Kishore D; Birzu G; Hu Z; DeLisi C; Korolev KS; Segrè D
    mSystems; 2023 Aug; 8(4):e0096122. PubMed ID: 37338270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study on multi-omic oscillations in Escherichia coli metabolic networks.
    Bardozzo F; Lió P; Tagliaferri R
    BMC Bioinformatics; 2018 Jul; 19(Suppl 7):194. PubMed ID: 30066640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference.
    Dohlman AB; Shen X
    Exp Biol Med (Maywood); 2019 Apr; 244(6):445-458. PubMed ID: 30880449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host-microbiota and other multi-omic interactions.
    Newman NK; Macovsky MS; Rodrigues RR; Bruce AM; Pederson JW; Padiadpu J; Shan J; Williams J; Patil SS; Dzutsev AK; Shulzhenko N; Trinchieri G; Brown K; Morgun A
    Nat Protoc; 2024 Jun; 19(6):1750-1778. PubMed ID: 38472495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal metrics analysis of oscillatory patterns in bacterial multi-omic networks.
    Bardozzo F; Lió P; Tagliaferri R
    Bioinformatics; 2021 Jun; 37(10):1411-1419. PubMed ID: 33185666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks.
    Nagpal S; Singh R; Yadav D; Mande SS
    Nucleic Acids Res; 2020 Jul; 48(W1):W572-W579. PubMed ID: 32338757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.