BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38168315)

  • 21. From classical mendelian randomization to causal networks for systematic integration of multi-omics.
    Yazdani A; Yazdani A; Mendez-Giraldez R; Samiei A; Kosorok MR; Schaid DJ
    Front Genet; 2022; 13():990486. PubMed ID: 36186433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CANTARE: finding and visualizing network-based multi-omic predictive models.
    Siebert JC; Saint-Cyr M; Borengasser SJ; Wagner BD; Lozupone CA; Görg C
    BMC Bioinformatics; 2021 Feb; 22(1):80. PubMed ID: 33607938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-omic integration of microbiome data for identifying disease-associated modules.
    Muller E; Shiryan I; Borenstein E
    Nat Commun; 2024 Mar; 15(1):2621. PubMed ID: 38521774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MPAC: a computational framework for inferring cancer pathway activities from multi-omic data.
    Liu P; Page D; Ahlquist P; Ong IM; Gitter A
    bioRxiv; 2024 Jun; ():. PubMed ID: 38948762
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MONET: Multi-omic module discovery by omic selection.
    Rappoport N; Safra R; Shamir R
    PLoS Comput Biol; 2020 Sep; 16(9):e1008182. PubMed ID: 32931516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A validated generally applicable approach using the systematic assessment of disease modules by GWAS reveals a multi-omic module strongly associated with risk factors in multiple sclerosis.
    Badam TVS; de Weerd HA; Martínez-Enguita D; Olsson T; Alfredsson L; Kockum I; Jagodic M; Lubovac-Pilav Z; Gustafsson M
    BMC Genomics; 2021 Aug; 22(1):631. PubMed ID: 34461822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Bioinformatics; 2008 Apr; 9():203. PubMed ID: 18426580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transkingdom Network Analysis (TkNA): a systems framework for inferring causal factors underlying host-microbiota and other multi-omic interactions.
    Newman NK; Macovsky M; Rodrigues RR; Bruce AM; Pederson JW; Patil SS; Padiadpu J; Dzutsev AK; Shulzhenko N; Trinchieri G; Brown K; Morgun A
    bioRxiv; 2023 Mar; ():. PubMed ID: 36865280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stool multi-omics for the study of host-microbe interactions in inflammatory bowel disease.
    Sauceda C; Bayne C; Sudqi K; Gonzalez A; Dulai PS; Knight R; Gonzalez DJ; Gonzalez CG
    Gut Microbes; 2022; 14(1):2154092. PubMed ID: 36503356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data.
    Kim D; Tran A; Kim HJ; Lin Y; Yang JYH; Yang P
    NPJ Syst Biol Appl; 2023 Oct; 9(1):51. PubMed ID: 37857632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises.
    Gao J; Yi X; Wang Z
    Comput Struct Biotechnol J; 2023; 21():4933-4943. PubMed ID: 37867968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites.
    Tang ZZ; Chen G; Hong Q; Huang S; Smith HM; Shah RD; Scholz M; Ferguson JF
    Front Genet; 2019; 10():454. PubMed ID: 31164901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Omics Strategies for Investigating the Microbiome in Toxicology Research.
    Morgan EW; Perdew GH; Patterson AD
    Toxicol Sci; 2022 May; 187(2):189-213. PubMed ID: 35285497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interpretation of network-based integration from multi-omics longitudinal data.
    Bodein A; Scott-Boyer MP; Perin O; Lê Cao KA; Droit A
    Nucleic Acids Res; 2022 Mar; 50(5):e27. PubMed ID: 34883510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TRANS-OMIC KNOWLEDGE TRANSFER MODELING INFERS GUT MICROBIOME BIOMARKERS OF ANTI-TNF RESISTANCE IN ULCERATIVE COLITIS.
    Trinh A; Ran R; Brubaker DK
    Pac Symp Biocomput; 2023; 28():287-298. PubMed ID: 36540985
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel approach for combining the metagenome, metaresistome, metareplicome and causal inference to determine the microbes and their antibiotic resistance gene repertoire that contribute to dysbiosis.
    Stebliankin V; Sazal M; Valdes C; Mathee K; Narasimhan G
    Microb Genom; 2022 Dec; 8(12):. PubMed ID: 36748547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Network reconstruction for trans acting genetic loci using multi-omics data and prior information.
    Hawe JS; Saha A; Waldenberger M; Kunze S; Wahl S; Müller-Nurasyid M; Prokisch H; Grallert H; Herder C; Peters A; Strauch K; Theis FJ; Gieger C; Chambers J; Battle A; Heinig M
    Genome Med; 2022 Nov; 14(1):125. PubMed ID: 36344995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using empirical biological knowledge to infer regulatory networks from multi-omics data.
    Pačínková A; Popovici V
    BMC Bioinformatics; 2022 Aug; 23(1):351. PubMed ID: 35996085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining compositional data sets introduces error in covariance network reconstruction.
    Brunner JD; Robinson AJ; Chain PSG
    ISME Commun; 2024 Jan; 4(1):ycae057. PubMed ID: 38812718
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IMPARO: inferring microbial interactions through parameter optimisation.
    Vidanaarachchi R; Shaw M; Tang SL; Halgamuge S
    BMC Mol Cell Biol; 2020 Aug; 21(Suppl 1):34. PubMed ID: 32814564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.