BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38168349)

  • 21. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model.
    Gulotta LV; Kovacevic D; Packer JD; Deng XH; Rodeo SA
    Am J Sports Med; 2011 Jun; 39(6):1282-9. PubMed ID: 21335341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iPSC-derived tenocytes seeded on microgrooved 3D printed scaffolds for Achilles tendon regeneration.
    Kaneda G; Chan JL; Castaneda CM; Papalamprou A; Sheyn J; Shelest O; Huang D; Kluser N; Yu V; Ignacio GC; Gertych A; Yoshida R; Metzger MF; Tawackoli W; Vernengo A; Sheyn D
    J Orthop Res; 2023 Oct; 41(10):2205-2220. PubMed ID: 36961351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle stem cells in developmental and regenerative myogenesis.
    Kang JS; Krauss RS
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):243-8. PubMed ID: 20098319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Analysis of Tenogenic Gene Expression in Tenocyte-Derived Induced Pluripotent Stem Cells and Bone Marrow-Derived Mesenchymal Stem Cells in Response to Biochemical and Biomechanical Stimuli.
    Yang F; Richardson DW
    Stem Cells Int; 2021; 2021():8835576. PubMed ID: 33510795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remnant tissue enhances early postoperative biomechanical strength and infiltration of Scleraxis-positive cells within the grafted tendon in a rat anterior cruciate ligament reconstruction model.
    Kawakami J; Hisanaga S; Yoshimoto Y; Mashimo T; Kaneko T; Yoshimura N; Shimada M; Tateyama M; Matsunaga H; Shibata Y; Tanimura S; Takata K; Arima T; Maeda K; Fukuma Y; Uragami M; Ideo K; Sugimoto K; Yonemitsu R; Matsushita K; Yugami M; Uehara Y; Nakamura T; Tokunaga T; Karasugi T; Sueyoshi T; Shukunami C; Okamoto N; Masuda T; Miyamoto T
    PLoS One; 2023; 18(11):e0293944. PubMed ID: 37939095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scleraxis is required for the growth of adult tendons in response to mechanical loading.
    Gumucio JP; Schonk MM; Kharaz YA; Comerford E; Mendias CL
    JCI Insight; 2020 Jul; 5(13):. PubMed ID: 32463804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pitx2 Differentially Regulates the Distinct Phases of Myogenic Program and Delineates Satellite Cell Lineages During Muscle Development.
    Ramírez de Acuña F; Hernandez-Torres F; Rodriguez-Outeiriño L; Dominguez JN; Matias-Valiente L; Sanchez-Fernandez C; Franco D; Aranega AE
    Front Cell Dev Biol; 2022; 10():940622. PubMed ID: 35874842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FGF signaling patterns cell fate at the interface between tendon and bone.
    Roberts RR; Bobzin L; Teng CS; Pal D; Tuzon CT; Schweitzer R; Merrill AE
    Development; 2019 Aug; 146(15):. PubMed ID: 31320326
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of Skeletal Muscle Organoids from Human Pluripotent Stem Cells to Model Myogenesis and Muscle Regeneration.
    Shin MK; Bang JS; Lee JE; Tran HD; Park G; Lee DR; Jo J
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scleraxis-Lineage Cells Contribute to Ectopic Bone Formation in Muscle and Tendon.
    Agarwal S; Loder SJ; Cholok D; Peterson J; Li J; Breuler C; Cameron Brownley R; Hsin Sung H; Chung MT; Kamiya N; Li S; Zhao B; Kaartinen V; Davis TA; Qureshi AT; Schipani E; Mishina Y; Levi B
    Stem Cells; 2017 Mar; 35(3):705-710. PubMed ID: 27862618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MiR-6924-5p-rich exosomes derived from genetically modified Scleraxis-overexpressing PDGFRα(+) BMMSCs as novel nanotherapeutics for treating osteolysis during tendon-bone healing and improving healing strength.
    Feng W; Jin Q; Ming-Yu Y; Yang H; Xu T; You-Xing S; Xu-Ting B; Wan C; Yun-Jiao W; Huan W; Ai-Ning Y; Yan L; Hong T; Pan H; Mi-Duo M; Gang H; Mei Z; Xia K; Kang-Lai T
    Biomaterials; 2021 Dec; 279():121242. PubMed ID: 34768151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myogenic-specific ablation of Fgfr1 impairs FGF2-mediated proliferation of satellite cells at the myofiber niche but does not abolish the capacity for muscle regeneration.
    Yablonka-Reuveni Z; Danoviz ME; Phelps M; Stuelsatz P
    Front Aging Neurosci; 2015; 7():85. PubMed ID: 26074812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient HIF2A inhibition promotes satellite cell proliferation and muscle regeneration.
    Xie L; Yin A; Nichenko AS; Beedle AM; Call JA; Yin H
    J Clin Invest; 2018 Jun; 128(6):2339-2355. PubMed ID: 29533927
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.
    Dyment NA; Liu CF; Kazemi N; Aschbacher-Smith LE; Kenter K; Breidenbach AP; Shearn JT; Wylie C; Rowe DW; Butler DL
    PLoS One; 2013; 8(3):e59944. PubMed ID: 23555841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament.
    Sugimoto Y; Takimoto A; Akiyama H; Kist R; Scherer G; Nakamura T; Hiraki Y; Shukunami C
    Development; 2013 Jun; 140(11):2280-8. PubMed ID: 23615282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential function of Scx+/Sox9+ cells as progenitor cells in rotator cuff tear repair in rats.
    Fukuma Y; Tokunaga T; Tanimura S; Yoshimoto Y; Mashimo T; Kaneko T; Tian X; Ideo K; Yonemitsu R; Matsushita K; Sugimoto K; Yugami M; Hisanaga S; Nakamura T; Uehara Y; Masuda T; Shukunami C; Karasugi T; Miyamoto T
    Biochem Biophys Res Commun; 2023 Oct; 676():84-90. PubMed ID: 37499368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smad4 restricts differentiation to promote expansion of satellite cell derived progenitors during skeletal muscle regeneration.
    Paris ND; Soroka A; Klose A; Liu W; Chakkalakal JV
    Elife; 2016 Nov; 5():. PubMed ID: 27855784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel roles for scleraxis in regulating adult tenocyte function.
    Nichols AEC; Settlage RE; Werre SR; Dahlgren LA
    BMC Cell Biol; 2018 Aug; 19(1):14. PubMed ID: 30086712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adult skeletal muscle stem cells.
    Sambasivan R; Tajbakhsh S
    Results Probl Cell Differ; 2015; 56():191-213. PubMed ID: 25344672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency.
    Stuelsatz P; Shearer A; Li Y; Muir LA; Ieronimakis N; Shen QW; Kirillova I; Yablonka-Reuveni Z
    Dev Biol; 2015 Jan; 397(1):31-44. PubMed ID: 25236433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.