These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38168351)

  • 1. A Boundary Element Method of Bidomain Modeling for Predicting Cellular Responses to Electromagnetic Fields.
    Czerwonky DM; Aberra AS; Gomez LJ
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A boundary element method of bidomain modeling for predicting cellular responses to electromagnetic fields.
    Czerwonky DM; Aberra AS; Gomez LJ
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38862011
    [No Abstract]   [Full Text] [Related]  

  • 3. A finite element method framework to model extracellular neural stimulation.
    Fellner A; Heshmat A; Werginz P; Rattay F
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320783
    [No Abstract]   [Full Text] [Related]  

  • 4. Estimations of Charge Deposition Onto Convoluted Axon Surfaces Within Extracellular Electric Fields.
    Noetscher GM; Tang D; Nummenmaa AR; Bingham CS; McIntyre CC; Makaroff SN
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):307-317. PubMed ID: 37535481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.
    Wang B; Aberra AS; Grill WM; Peterchev AV
    J Neural Eng; 2018 Apr; 15(2):026003. PubMed ID: 29363622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fully implicit finite element method for bidomain models of cardiac electromechanics.
    Dal H; Göktepe S; Kaliske M; Kuhl E
    Comput Methods Appl Mech Eng; 2013 Jan; 253():323-336. PubMed ID: 23175588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced magnetic transduction of neuronal activity by nanofabricated inductors quantified via finite element analysis.
    Phillips J; Glodowski M; Gokhale Y; Dwyer M; Ashtiani A; Hai A
    J Neural Eng; 2022 Jul; 19(4):. PubMed ID: 35705065
    [No Abstract]   [Full Text] [Related]  

  • 8. Electromagnetic scattering from cylindrical objects above a conductive surface using a hybrid finite-element-surface integral equation method.
    Alavikia B; Ramahi OM
    J Opt Soc Am A Opt Image Sci Vis; 2011 Dec; 28(12):2510-8. PubMed ID: 22193264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An adaptive h-refinement method for the boundary element fast multipole method for quasi-static electromagnetic modeling.
    Wartman WA; Weise K; Rachh M; Morales L; Deng ZD; Nummenmaa A; Makaroff SN
    Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38316038
    [No Abstract]   [Full Text] [Related]  

  • 11. Modelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations.
    Meffin H; Tahayori B; Sergeev EN; Mareels IM; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):065004. PubMed ID: 25419585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue.
    Fischer G; Tilg B; Modre R; Huiskamp GJ; Fetzer J; Rucker W; Wach P
    Ann Biomed Eng; 2000; 28(10):1229-43. PubMed ID: 11144984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes.
    Makarov SN; Golestanirad L; Wartman WA; Nguyen BT; Noetscher GM; Ahveninen JP; Fujimoto K; Weise K; Nummenmaa AR
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34311449
    [No Abstract]   [Full Text] [Related]  

  • 14. A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries.
    Biasi N; Seghetti P; Mercati M; Tognetti A
    PLoS One; 2023; 18(6):e0286577. PubMed ID: 37294777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling extracellular electrical neural stimulation: from basic understanding to MEA-based applications.
    Joucla S; Yvert B
    J Physiol Paris; 2012; 106(3-4):146-58. PubMed ID: 22036892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling transcranial magnetic stimulation coil with magnetic cores.
    Makaroff SN; Nguyen H; Meng Q; Lu H; Nummenmaa AR; Deng ZD
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36548994
    [No Abstract]   [Full Text] [Related]  

  • 18. A generalized cable equation for magnetic stimulation of axons.
    Nagarajan SS; Durand DM
    IEEE Trans Biomed Eng; 1996 Mar; 43(3):304-12. PubMed ID: 8682543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidomain ECG simulations using an augmented monodomain model for the cardiac source.
    Bishop MJ; Plank G
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21536529
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.