These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38168368)

  • 21. A Monte Carlo Metropolis-Hastings algorithm for sampling from distributions with intractable normalizing constants.
    Liang F; Jin IH
    Neural Comput; 2013 Aug; 25(8):2199-234. PubMed ID: 23607562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. QuadST: A Powerful and Robust Approach for Identifying Cell-Cell Interaction-Changed Genes on Spatially Resolved Transcriptomics.
    Choi J; Ehrlich ME; Roussos P; Wang P; Yuan GC; Song X
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. spVC for the detection and interpretation of spatial gene expression variation.
    Yu S; Li WV
    Genome Biol; 2024 Apr; 25(1):103. PubMed ID: 38641849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data.
    Zhang M; Li Q; Xie Y
    Quant Biol; 2018 Sep; 6(3):275-286. PubMed ID: 33833899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies.
    Sun S; Zhu J; Zhou X
    Nat Methods; 2020 Feb; 17(2):193-200. PubMed ID: 31988518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bayesian interval mapping of count trait loci based on zero-inflated generalized Poisson regression model.
    Chi J; Zhou Y; Chen L; Zhou Y
    Biom J; 2020 Oct; 62(6):1428-1442. PubMed ID: 32399977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene count normalization in single-cell imaging-based spatially resolved transcriptomics.
    Atta L; Clifton K; Anant M; Aihara G; Fan J
    bioRxiv; 2024 Mar; ():. PubMed ID: 37693542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial Transcriptomics Arena (STAr): an Integrated Platform for Spatial Transcriptomics Methodology Research.
    Jiang X; Luo D; Fern Ndez E; Yang J; Li H; Jin KW; Zhan Y; Yao B; Bedi S; Xiao G; Zhan X; Li Q; Xie Y
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MUSTANG: Multi-sample spatial transcriptomics data analysis with cross-sample transcriptional similarity guidance.
    Niyakan S; Sheng J; Cao Y; Zhang X; Xu Z; Wu L; Wong STC; Qian X
    Patterns (N Y); 2024 May; 5(5):100986. PubMed ID: 38800365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hexagonal image segmentation on spatially resolved transcriptomics.
    Gao J; Hu K; Zhang F; Cui X
    Methods; 2023 Dec; 220():61-68. PubMed ID: 37931852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.
    Zhang L; Guindani M; Versace F; Vannucci M
    Neuroimage; 2014 Jul; 95():162-75. PubMed ID: 24650600
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes.
    Yang Y; Shi X; Liu W; Zhou Q; Chan Lau M; Chun Tatt Lim J; Sun L; Ng CCY; Yeong J; Liu J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34849574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DESpace: spatially variable gene detection via differential expression testing of spatial clusters.
    Cai P; Robinson MD; Tiberi S
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38243704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling diffusion-weighted MRI as a spatially variant gaussian mixture: application to image denoising.
    Gonzalez JE; Thompson PM; Zhao A; Tu Z
    Med Phys; 2011 Jul; 38(7):4350-64. PubMed ID: 21859036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian hierarchical modelling of noisy spatial rates on a modestly large and discontinuous irregular lattice.
    MacNab YC; Read S; Strong M; Pearson T; Maheswaran R; Goyder E
    Stat Methods Med Res; 2014 Dec; 23(6):552-71. PubMed ID: 24671659
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SPICEMIX enables integrative single-cell spatial modeling of cell identity.
    Chidester B; Zhou T; Alam S; Ma J
    Nat Genet; 2023 Jan; 55(1):78-88. PubMed ID: 36624346
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of cell-type-specific spatially variable genes accounting for excess zeros.
    Yu J; Luo X
    Bioinformatics; 2022 Sep; 38(17):4135-4144. PubMed ID: 35792822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene count normalization in single-cell imaging-based spatially resolved transcriptomics.
    Atta L; Clifton K; Anant M; Aihara G; Fan J
    Genome Biol; 2024 Jun; 25(1):153. PubMed ID: 38867267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dependency-aware deep generative models for multitasking analysis of spatial omics data.
    Tian T; Zhang J; Lin X; Wei Z; Hakonarson H
    Nat Methods; 2024 May; ():. PubMed ID: 38783067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.