These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38168368)

  • 41. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network.
    Li X; Huang W; Xu X; Zhang HY; Shi Q
    Front Genet; 2023; 14():1202409. PubMed ID: 37303949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges.
    Cheng M; Jiang Y; Xu J; Mentis AA; Wang S; Zheng H; Sahu SK; Liu L; Xu X
    J Genet Genomics; 2023 Sep; 50(9):625-640. PubMed ID: 36990426
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling zero inflation is not necessary for spatial transcriptomics.
    Zhao P; Zhu J; Ma Y; Zhou X
    Genome Biol; 2022 May; 23(1):118. PubMed ID: 35585605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder.
    Dong K; Zhang S
    Nat Commun; 2022 Apr; 13(1):1739. PubMed ID: 35365632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatially contrastive variational autoencoder for deciphering tissue heterogeneity from spatially resolved transcriptomics.
    Hu Y; Xiao K; Yang H; Liu X; Zhang C; Shi Q
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38324623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatially resolved transcriptomics provide a new method for cancer research.
    Zheng B; Fang L
    J Exp Clin Cancer Res; 2022 May; 41(1):179. PubMed ID: 35590346
    [TBL] [Abstract][Full Text] [Related]  

  • 47. nnSVG for the scalable identification of spatially variable genes using nearest-neighbor Gaussian processes.
    Weber LM; Saha A; Datta A; Hansen KD; Hicks SC
    Nat Commun; 2023 Jul; 14(1):4059. PubMed ID: 37429865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Promise of spatially resolved omics for tumor research.
    Zhou Y; Jiang X; Wang X; Huang J; Li T; Jin H; He J
    J Pharm Anal; 2023 Aug; 13(8):851-861. PubMed ID: 37719191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. stAPAminer: Mining Spatial Patterns of Alternative Polyadenylation for Spatially Resolved Transcriptomic Studies.
    Ji G; Tang Q; Zhu S; Zhu J; Ye P; Xia S; Wu X
    Genomics Proteomics Bioinformatics; 2023 Jun; 21(3):601-618. PubMed ID: 36669641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graph deep learning enabled spatial domains identification for spatial transcriptomics.
    Liu T; Fang ZY; Li X; Zhang LN; Cao DS; Yin MZ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080761
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics.
    Liang Y; Shi G; Cai R; Yuan Y; Xie Z; Yu L; Huang Y; Shi Q; Wang L; Li J; Tang Z
    Nat Commun; 2024 Jan; 15(1):600. PubMed ID: 38238417
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Benchmarking computational methods to identify spatially variable genes and peaks.
    Li Z; Patel ZM; Song D; Yan G; Li JJ; Pinello L
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076922
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SMASH: Scalable Method for Analyzing Spatial Heterogeneity of genes in spatial transcriptomics data.
    Seal S; Bitler BG; Ghosh D
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993287
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk.
    Shao X; Li C; Yang H; Lu X; Liao J; Qian J; Wang K; Cheng J; Yang P; Chen H; Xu X; Fan X
    Nat Commun; 2022 Jul; 13(1):4429. PubMed ID: 35908020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recent advances in spatially variable gene detection in spatial transcriptomics.
    Das Adhikari S; Yang J; Wang J; Cui Y
    Comput Struct Biotechnol J; 2024 Dec; 23():883-891. PubMed ID: 38370977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bayesian variable selection in modelling geographical heterogeneity in malaria transmission from sparse data: an application to Nouna Health and Demographic Surveillance System (HDSS) data, Burkina Faso.
    Diboulo E; Sié A; Diadier DA; Karagiannis Voules DA; Yé Y; Vounatsou P
    Parasit Vectors; 2015 Feb; 8():118. PubMed ID: 25888970
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net.
    Leach JM; Aban I; Yi N;
    J Stat Plan Inference; 2022 Mar; 217():141-152. PubMed ID: 36911105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Partial alignment of multislice spatially resolved transcriptomics data.
    Liu X; Zeira R; Raphael BJ
    Genome Res; 2023 Jul; 33(7):1124-1132. PubMed ID: 37553263
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A SELECTIVE REVIEW OF RECENT DEVELOPMENTS IN SPATIALLY VARIABLE GENE DETECTION FOR SPATIAL TRANSCRIPTOMICS.
    Adhikari SD; Yang J; Wang J; Cui Y
    ArXiv; 2023 Nov; ():. PubMed ID: 38045476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.