BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38168441)

  • 1. An Integrated Optogenetic and Bioelectronic Platform for Regulating Cardiomyocyte Function.
    Bolonduro OA; Chen Z; Lai YR; Cote M; Rao AA; Liu H; Tzanakakis ES; Timko BP
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PACmn for improved optogenetic control of intracellular cAMP.
    Yang S; Constantin OM; Sachidanandan D; Hofmann H; Kunz TC; Kozjak-Pavlovic V; Oertner TG; Nagel G; Kittel RJ; Gee CE; Gao S
    BMC Biol; 2021 Oct; 19(1):227. PubMed ID: 34663304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic manipulation of neuronal and cardiomyocyte functions in zebrafish using microbial rhodopsins and adenylyl cyclases.
    Hagio H; Koyama W; Hosaka S; Song AD; Narantsatsral J; Matsuda K; Shimizu T; Hososhima S; Tsunoda SP; Kandori H; Hibi M
    Elife; 2023 Aug; 12():. PubMed ID: 37589546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart-on-a-Chip Model with Integrated Extra- and Intracellular Bioelectronics for Monitoring Cardiac Electrophysiology under Acute Hypoxia.
    Liu H; Bolonduro OA; Hu N; Ju J; Rao AA; Duffy BM; Huang Z; Black LD; Timko BP
    Nano Lett; 2020 Apr; 20(4):2585-2593. PubMed ID: 32092276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop bioelectronic medicine for diabetes management.
    Güemes Gonzalez A; Etienne-Cummings R; Georgiou P
    Bioelectron Med; 2020; 6():11. PubMed ID: 32467827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive human stem cell differentiation in a 2D and 3D mode to cardiomyocytes for long-term cultivation and multiparametric monitoring on a multimodal microelectrode array setup.
    Fleischer S; Jahnke HG; Fritsche E; Girard M; Robitzki AA
    Biosens Bioelectron; 2019 Feb; 126():624-631. PubMed ID: 30508787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term in vivo application of a potassium channel-based optogenetic silencer in the healthy and epileptic mouse hippocampus.
    Kleis P; Paschen E; Häussler U; Bernal Sierra YA; Haas CA
    BMC Biol; 2022 Jan; 20(1):18. PubMed ID: 35031048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Change of Arginine Conformation Modulates the Rate of Adenosine Triphosphate to Cyclic Adenosine Monophosphate Conversion in the Optogenetic System Containing Photoactivated Adenylyl Cyclase.
    Khrenova MG; Kulakova AM; Nemukhin AV
    J Chem Inf Model; 2021 Mar; 61(3):1215-1225. PubMed ID: 33677973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved platform for cultured neuronal network electrophysiology: multichannel optogenetics integrated with MEAs.
    Bayat FK; Alp Mİ; Bostan S; Gülçür HÖ; Öztürk G; Güveniş A
    Eur Biophys J; 2022 Sep; 51(6):503-514. PubMed ID: 35930029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of Using Adjunctive Optogenetic Technologies in Cardiomyocyte Phenotyping - from the Single Cell to the Whole Heart.
    Bub G; Daniels MJ
    Curr Pharm Biotechnol; 2020; 21(9):752-764. PubMed ID: 30961485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
    Bingen BO; Engels MC; Schalij MJ; Jangsangthong W; Neshati Z; Feola I; Ypey DL; Askar SF; Panfilov AV; Pijnappels DA; de Vries AA
    Cardiovasc Res; 2014 Oct; 104(1):194-205. PubMed ID: 25082848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A feedback control architecture for bioelectronic devices with applications to wound healing.
    Hosseini Jafari B; Zlobina K; Marquez G; Jafari M; Selberg J; Jia M; Rolandi M; Gomez M
    J R Soc Interface; 2021 Dec; 18(185):20210497. PubMed ID: 34847791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active force generation contributes to the complexity of spontaneous activity and to the response to stretch of murine cardiomyocyte cultures.
    Nayir S; Lacour SP; Kucera JP
    J Physiol; 2022 Jul; 600(14):3287-3312. PubMed ID: 35679256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetic regulation of insulin secretion in pancreatic β-cells.
    Zhang F; Tzanakakis ES
    Sci Rep; 2017 Aug; 7(1):9357. PubMed ID: 28839233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IPG-based field potential measurement of cultured cardiomyocytes for optogenetic applications.
    Wang TW; Sung YL; Chu HW; Lin SF
    Biosens Bioelectron; 2021 May; 179():113060. PubMed ID: 33571936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action potential-based MEA platform for in vitro screening of drug-induced cardiotoxicity using human iPSCs and rat neonatal myocytes.
    Jans D; Callewaert G; Krylychkina O; Hoffman L; Gullo F; Prodanov D; Braeken D
    J Pharmacol Toxicol Methods; 2017 Sep; 87():48-52. PubMed ID: 28549786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of High-Dose Irradiation on Human iPSC-Derived Cardiomyocytes Using Multi-Electrode Arrays: Implications for the Antiarrhythmic Effects of Cardiac Radioablation.
    Kim JS; Choi SW; Park YG; Kim SJ; Choi CH; Cha MJ; Chang JH
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic Stimulation of G
    Cokić M; Bruegmann T; Sasse P; Malan D
    Front Physiol; 2021; 12():768495. PubMed ID: 34987414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key residues for the light regulation of the blue light-activated adenylyl cyclase from Beggiatoa sp.
    Stierl M; Penzkofer A; Kennis JT; Hegemann P; Mathes T
    Biochemistry; 2014 Aug; 53(31):5121-30. PubMed ID: 25046330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunities and challenges for developing closed-loop bioelectronic medicines.
    Ganzer PD; Sharma G
    Neural Regen Res; 2019 Jan; 14(1):46-50. PubMed ID: 30531069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.