BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38168465)

  • 1. PBIT
    Chakraborty S; Askari M; Barai RS; Idicula-Thomas S
    Protein Sci; 2024 Feb; 33(2):e4892. PubMed ID: 38168465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PBIT: Pipeline Builder for Identification of drug Targets for infectious diseases.
    Shende G; Haldankar H; Barai RS; Bharmal MH; Shetty V; Idicula-Thomas S
    Bioinformatics; 2017 Mar; 33(6):929-931. PubMed ID: 28039165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis.
    Raman K; Yeturu K; Chandra N
    BMC Syst Biol; 2008 Dec; 2():109. PubMed ID: 19099550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome Exploration of
    Khan MT; Mahmud A; Hasan M; Azim KF; Begum MK; Rolin MH; Akter A; Mondal SI
    Microbiol Spectr; 2022 Aug; 10(4):e0037322. PubMed ID: 35863001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of potential druggable targets among hypothetical proteins of extensively drug resistant Mycobacterium tuberculosis (XDR KZN 605) through subtractive genomics approach.
    Uddin R; Siddiqui QN; Azam SS; Saima B; Wadood A
    Eur J Pharm Sci; 2018 Mar; 114():13-23. PubMed ID: 29174549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the druggable proteome of Candida species through comprehensive computational analysis.
    Mukherjee S; Kundu I; Askari M; Barai RS; Venkatesh KV; Idicula-Thomas S
    Genomics; 2021 Mar; 113(2):728-739. PubMed ID: 33484798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Drug Target Discovery Through Proteome Mining from M. tuberculosis: An Insight into Antivirulent Therapy.
    Bhattacharya S; Ghosh P; Banerjee D; Banerjee A; Ray S
    Comb Chem High Throughput Screen; 2020; 23(3):253-268. PubMed ID: 32072892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive essentiality analysis of the
    Levendosky K; Janisch N; Quadri LEN
    mBio; 2023 Aug; 14(4):e0057323. PubMed ID: 37350613
    [No Abstract]   [Full Text] [Related]  

  • 9. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VacSol: a high throughput in silico pipeline to predict potential therapeutic targets in prokaryotic pathogens using subtractive reverse vaccinology.
    Rizwan M; Naz A; Ahmad J; Naz K; Obaid A; Parveen T; Ahsan M; Ali A
    BMC Bioinformatics; 2017 Feb; 18(1):106. PubMed ID: 28193166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative mycobacterial genomics as a tool for drug target and antigen discovery.
    Cole ST
    Eur Respir J Suppl; 2002 Jul; 36():78s-86s. PubMed ID: 12168750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a subtractive genomics approach for in silico identification and characterization of novel drug targets in Mycobacterium tuberculosis F11.
    Hosen MI; Tanmoy AM; Mahbuba DA; Salma U; Nazim M; Islam MT; Akhteruzzaman S
    Interdiscip Sci; 2014 Mar; 6(1):48-56. PubMed ID: 24464704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tuberculosis structural genomics consortium: a structural genomics approach to drug discovery.
    Musa TL; Ioerger TR; Sacchettini JC
    Adv Protein Chem Struct Biol; 2009; 77():41-76. PubMed ID: 20663481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Novel Putative Drugs and Vaccine Candidates against Tick-Borne Pathogens: A Subtractive Proteomics Approach.
    Ali A; Ahmad S; Wadood A; Rehman AU; Zahid H; Qayash Khan M; Nawab J; Rahman ZU; Alouffi AS
    Vet Sci; 2020 Sep; 7(3):. PubMed ID: 32906620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens.
    Mishra A; Pant P; Mrinal N; Jayaram B
    Methods; 2017 Dec; 131():4-9. PubMed ID: 28733089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology.
    Monterrubio-López GP; González-Y-Merchand JA; Ribas-Aparicio RM
    Biomed Res Int; 2015; 2015():483150. PubMed ID: 25961021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651.
    Hizbullah ; Nazir Z; Afridi SG; Shah M; Shams S; Khan A
    Microb Pathog; 2018 Dec; 125():219-229. PubMed ID: 30243554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping Gene-by-Gene Single-Nucleotide Variation in 8,535 Mycobacterium tuberculosis Genomes: a Resource To Support Potential Vaccine and Drug Development.
    Papakonstantinou D; Dunn SJ; Draper SJ; Cunningham AF; O'Shea MK; McNally A
    mSphere; 2021 Mar; 6(2):. PubMed ID: 33692198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis.
    Hassan SS; Tiwari S; Guimarães LC; Jamal SB; Folador E; Sharma NB; de Castro Soares S; Almeida S; Ali A; Islam A; Póvoa FD; de Abreu VA; Jain N; Bhattacharya A; Juneja L; Miyoshi A; Silva A; Barh D; Turjanski A; Azevedo V; Ferreira RS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S3. PubMed ID: 25573232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of putative non-host essential genes and novel drug targets against Acinetobacter baumannii by in silico comparative genome analysis.
    Uddin R; Masood F; Azam SS; Wadood A
    Microb Pathog; 2019 Mar; 128():28-35. PubMed ID: 30550846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.