These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38168506)

  • 1. A Dual Encapsulation Strategy for High-Temperature Micro PCM Particles with High Cyclic Durability.
    Wang K; Tao K; Ye F; Wang T; Xu C
    Small; 2024 Jun; 20(24):e2310252. PubMed ID: 38168506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.
    Nomura T; Zhu C; Sheng N; Saito G; Akiyama T
    Sci Rep; 2015 Mar; 5():9117. PubMed ID: 25766648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Study of Manufacturing Processes of Composite Form-Stable Phase Change Materials Based on Ca(NO
    Ren Y; Xu C; Wang T; Tian Z; Liao Z
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33256103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase Change Materials Meet Microfluidic Encapsulation.
    Guo Y; Hou T; Wang J; Yan Y; Li W; Ren Y; Yan S
    Adv Sci (Weinh); 2023 Nov; ():e2304580. PubMed ID: 37963852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulosic scaffolds doped with boron nitride nanosheets for shape-stabilized phase change composites with enhanced thermal conductivity.
    Yang G; Wang B; Cheng H; Mao Z; Xu H; Zhong Y; Feng X; Yu J; Sui X
    Int J Biol Macromol; 2020 Apr; 148():627-634. PubMed ID: 31968214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Sugar Alcohol/Carbonized Kapok Fiber Composites as Form-Stable Phase-Change Materials with Exceptionally High Latent Heat for Thermal Energy Storage.
    An J; Liang W; Mu P; Wang C; Chen T; Zhu Z; Sun H; Li A
    ACS Omega; 2019 Mar; 4(3):4848-4855. PubMed ID: 31459669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cores regulation of paraffin-chitosan phase change microcapsules for constant temperature building.
    Wen B; Tian L; Wei D; Chen Y; Ma Y; Zhao Y; Zhang K; Li Z
    J Colloid Interface Sci; 2024 Oct; 672():338-349. PubMed ID: 38850861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal performance enhancement of lauric acid using nanomaterials as composite phase change material.
    Santhanam H; Ali HM; Sharma RK
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):38618-38627. PubMed ID: 38393571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macro-Encapsulation of Inorganic Phase-Change Materials (PCM) in Metal Capsules.
    Höhlein S; König-Haagen A; Brüggemann D
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Performance of Composite Microencapsulated Phase Change Materials with Palmitic Acid Ethyl Ester as Core.
    Yin Q; Zhu Z; Li W; Guo M; Wang Y; Wang J; Zhang X
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste.
    Šavija B; Zhang H; Schlangen E
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lego-Inspired Glass Capillary Microfluidic Device: A Technique for Bespoke Microencapsulation of Phase Change Materials.
    Parvate S; Vladisavljević GT; Leister N; Spyrou A; Bolognesi G; Baiocco D; Zhang Z; Chattopadhyay S
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17195-17210. PubMed ID: 36961881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Characterization of Microencapsulated Phase Change Materials with Poly(urea-urethane) Shells Containing Cellulose Nanocrystals.
    Yoo Y; Martinez C; Youngblood JP
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31763-31776. PubMed ID: 28787125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase Change Thermal Energy Storage Enabled by an In Situ Formed Porous TiO
    Liu Q; Xiao T; Zhao J; Sun W; Liu C
    Small; 2023 Feb; 19(5):e2204998. PubMed ID: 36461696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryogenic conditioning of microencapsulated phase change material for thermal energy storage.
    Trivedi GVN; Parameshwaran R
    Sci Rep; 2020 Oct; 10(1):18353. PubMed ID: 33110121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Molecular PCM Wall with Inorganic Composite: Dynamic Thermal Analysis and Optimization in Charge-Discharge Cycles.
    Yang Q; Xiong J; Mao G; Zhang Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and application of composite phase change materials stabilized by cellulose nanofibril-based foams for thermal energy storage.
    Shen Z; Kwon S; Lee HL; Toivakka M; Oh K
    Int J Biol Macromol; 2022 Dec; 222(Pt B):3001-3013. PubMed ID: 36244531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and Thermal Properties of Propyl Palmitate-Based Phase Change Composites with Enhanced Thermal Conductivity for Thermal Energy Storage.
    Yin L; Zhao M; Yang R
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior Form-Stable Phase Change Material Made with Graphene-Connected Carbon Nanofibers and Fatty Acid Eutectics.
    Song X; Cai Y; Wu Y; Wang W; Sun X; Wei Q; Zhang L
    J Nanosci Nanotechnol; 2019 Nov; 19(11):7044-7053. PubMed ID: 31039857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural Analysis of Phase Change Materials (PCMs)/Expanded Graphite (EG) Composites and Their Thermal Behavior under Hot and Humid Conditions.
    Yang K; Zhang X; Venkataraman M; Wiener J; Palanisamy S; Sozcu S; Tan X; Kremenakova D; Zhu G; Yao J; Militky J
    Chempluschem; 2023 Apr; 88(4):e202300081. PubMed ID: 36951444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.