BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 38168540)

  • 1. Using inertial measurement units to estimate spine joint kinematics and kinetics during walking and running.
    Sibson BE; Banks JJ; Yawar A; Yegian AK; Anderson DE; Lieberman DE
    Sci Rep; 2024 Jan; 14(1):234. PubMed ID: 38168540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMUs Can Estimate Hip and Knee Range of Motion during Walking Tasks but Are Not Sensitive to Changes in Load or Grade.
    Fain A; McCarthy A; Nindl BC; Fuller JT; Wills JA; Doyle TLA
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D gait analysis in children using wearable sensors: feasibility of predicting joint kinematics and kinetics with personalized machine learning models and inertial measurement units.
    Mohammadi Moghadam S; Ortega Auriol P; Yeung T; Choisne J
    Front Bioeng Biotechnol; 2024; 12():1372669. PubMed ID: 38572359
    [No Abstract]   [Full Text] [Related]  

  • 4. A 0.05 m Change in Inertial Measurement Unit Placement Alters Time and Frequency Domain Metrics during Running.
    Kiernan D; Katzman ZD; Hawkins DA; Christiansen BA
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marker-Based Versus IMU-Based Kinematics for Estimates of Lumbar Spine Loads Using a Full-Body Musculoskeletal Model.
    Prado M; Oyama S; Giambini H
    J Appl Biomech; 2024 Jun; ():1-10. PubMed ID: 38881179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validity and Sensitivity of an Inertial Measurement Unit-Driven Biomechanical Model of Motor Variability for Gait.
    Bailey CA; Uchida TK; Nantel J; Graham RB
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of lower back muscle force in a lifting task using wearable IMUs.
    Shakourisalim M; Martinez KB; Golabchi A; Tavakoli M; Rouhani H
    J Biomech; 2024 Apr; 167():112077. PubMed ID: 38599020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Compressive and Shear Forces at L5-S1: Exploring the Effects of Load Weight, Asymmetry, and Height Using Optical and Inertial Motion Capture Systems.
    Nail-Ulloa I; Zabala M; Sesek R; Chen H; Schall MC; Gallagher S
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Three-Dimensional Lower Limb Kinetics Data during Walking Using Machine Learning from a Single IMU Attached to the Sacrum.
    Lee M; Park S
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33158140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations.
    Nitschke M; Dorschky E; Leyendecker S; Eskofier BM; Koelewijn AD
    Front Bioeng Biotechnol; 2024; 12():1285845. PubMed ID: 38628437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does IMU redundancy improve multi-body optimization results to obtain lower-body kinematics? A preliminary study says no.
    Couvertier M; Pacher L; Fradet L
    J Biomech; 2024 May; 168():112091. PubMed ID: 38640829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameterization of Biomechanical Variables through Inertial Measurement Units (IMUs) in Occasional Healthy Runners.
    Pareja-Cano Á; Arjona JM; Caulfield B; Cuesta-Vargas A
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Two Contact Detection Methods for Ground Reaction Forces and Moment Estimation During Sidestep Cuts, Runs, and Walks.
    Morin P; Muller A; Dumont G; Pontonnier C
    J Biomech Eng; 2024 Jan; 146(1):. PubMed ID: 37943104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multibody Model with Foot-Deformation Approach for Estimating Ground Reaction Forces and Moments and Joint Torques during Level Walking through Optical Motion Capture without Optimization Techniques.
    Haraguchi N; Hase K
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Center of Mass Estimation for Impaired Gait Assessment Using Inertial Measurement Units.
    Labrozzi GC; Warner H; Makowski NS; Audu ML; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():12-22. PubMed ID: 38090847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards wearable and portable spine motion analysis through dynamic optimization of smartphone videos and IMU data.
    Wang W; Peng Y; Sun Y; Wang J; Li G
    IEEE J Biomed Health Inform; 2024 Jun; PP():. PubMed ID: 38923475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 1: Robustness.
    Pagnon D; Domalain M; Reveret L
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated, IMU-based spine angle estimation and IMU location identification for telerehabilitation.
    Pan H; Wang H; Li D; Zhu K; Gao Y; Yin R; Shull PB
    J Neuroeng Rehabil; 2024 Jun; 21(1):96. PubMed ID: 38845000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating Movement Smoothness From Inertial Measurement Units.
    Melendez-Calderon A; Shirota C; Balasubramanian S
    Front Bioeng Biotechnol; 2020; 8():558771. PubMed ID: 33520949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The quest for dynamic consistency: a comparison of OpenSim tools for residual reduction in simulations of human running.
    Fox AS
    R Soc Open Sci; 2024 May; 11(5):231909. PubMed ID: 38699555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.