These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38168841)

  • 1. SilenceREIN: seeking silencers on anchors of chromatin loops by deep graph neural networks.
    Pan JH; Du PF
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38168841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mariner Transposons Contain a Silencer: Possible Role of the Polycomb Repressive Complex 2.
    Bire S; Casteret S; Piégu B; Beauclair L; Moiré N; Arensbuger P; Bigot Y
    PLoS Genet; 2016 Mar; 12(3):e1005902. PubMed ID: 26939020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Silencers: Driving Gene Expression with the Brakes On.
    Segert JA; Gisselbrecht SS; Bulyk ML
    Trends Genet; 2021 Jun; 37(6):514-527. PubMed ID: 33712326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development.
    Ngan CY; Wong CH; Tjong H; Wang W; Goldfeder RL; Choi C; He H; Gong L; Lin J; Urban B; Chow J; Li M; Lim J; Philip V; Murray SA; Wang H; Wei CL
    Nat Genet; 2020 Mar; 52(3):264-272. PubMed ID: 32094912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepICSH: a complex deep learning framework for identifying cell-specific silencers and their strength from the human genome.
    Zhang T; Li L; Sun H; Xu D; Wang G
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37643374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candidate silencer elements for the human and mouse genomes.
    Doni Jayavelu N; Jajodia A; Mishra A; Hawkins RD
    Nat Commun; 2020 Feb; 11(1):1061. PubMed ID: 32103011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information content differentiates enhancers from silencers in mouse photoreceptors.
    Friedman RZ; Granas DM; Myers CA; Corbo JC; Cohen BA; White MA
    Elife; 2021 Sep; 10():. PubMed ID: 34486522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop.
    Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of non-coding silencer elements and their regulation of gene expression.
    Pang B; van Weerd JH; Hamoen FL; Snyder MP
    Nat Rev Mol Cell Biol; 2023 Jun; 24(6):383-395. PubMed ID: 36344659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ChromLoops: a comprehensive database for specific protein-mediated chromatin loops in diverse organisms.
    Zhou Q; Cheng S; Zheng S; Wang Z; Guan P; Zhu Z; Huang X; Zhou C; Li G
    Nucleic Acids Res; 2023 Jan; 51(D1):D57-D69. PubMed ID: 36243984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic identification of silencers in human cells.
    Pang B; Snyder MP
    Nat Genet; 2020 Mar; 52(3):254-263. PubMed ID: 32094911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short tandem repeats are important contributors to silencer elements in T cells.
    Hussain S; Sadouni N; van Essen D; Dao LTM; Ferré Q; Charbonnier G; Torres M; Gallardo F; Lecellier CH; Sexton T; Saccani S; Spicuglia S
    Nucleic Acids Res; 2023 Jun; 51(10):4845-4866. PubMed ID: 36929452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility.
    Liu Q; Hua K; Zhang X; Wong WH; Jiang R
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):496-507. PubMed ID: 35293310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The contribution of silencer variants to human diseases.
    Huang D; Ovcharenko I
    Genome Biol; 2024 Jul; 25(1):184. PubMed ID: 38978133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Distance Repression by Human Silencers: Chromatin Interactions and Phase Separation in Silencers.
    Zhang Y; See YX; Tergaonkar V; Fullwood MJ
    Cells; 2022 May; 11(9):. PubMed ID: 35563864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph convolutional networks for epigenetic state prediction using both sequence and 3D genome data.
    Lanchantin J; Qi Y
    Bioinformatics; 2020 Dec; 36(Suppl_2):i659-i667. PubMed ID: 33381816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers.
    Zou Y; Yu Q; Bi X
    Mol Cell Biol; 2006 Oct; 26(20):7806-19. PubMed ID: 16908533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NPI-GNN: Predicting ncRNA-protein interactions with deep graph neural networks.
    Shen ZA; Luo T; Zhou YK; Yu H; Du PF
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.