These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38168994)
1. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Ye L; Zhao D; Li J; Wang Y; Li B; Yang Y; Hou X; Wang H; Wei Z; Liu X; Li Y; Li S; Liu Y; Zhang X; Bi C Nat Biotechnol; 2024 Oct; 42(10):1538-1547. PubMed ID: 38168994 [TBL] [Abstract][Full Text] [Related]
2. Glycosylase base editors enable C-to-A and C-to-G base changes. Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970 [TBL] [Abstract][Full Text] [Related]
3. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Tong H; Wang H; Wang X; Liu N; Li G; Wu D; Li Y; Jin M; Li H; Wei Y; Li T; Yuan Y; Shi L; Yao X; Zhou Y; Yang H Nat Commun; 2024 Jun; 15(1):4897. PubMed ID: 38851742 [TBL] [Abstract][Full Text] [Related]
4. Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli. Shelake RM; Pramanik D; Kim JY mBio; 2023 Feb; 14(1):e0229622. PubMed ID: 36625577 [TBL] [Abstract][Full Text] [Related]
5. Programmable DNA pyrimidine base editing via engineered uracil-DNA glycosylase. Yi Z; Zhang X; Wei X; Li J; Ren J; Zhang X; Zhang Y; Tang H; Chang X; Yu Y; Wei W Nat Commun; 2024 Jul; 15(1):6397. PubMed ID: 39080265 [TBL] [Abstract][Full Text] [Related]
6. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Doman JL; Raguram A; Newby GA; Liu DR Nat Biotechnol; 2020 May; 38(5):620-628. PubMed ID: 32042165 [TBL] [Abstract][Full Text] [Related]
7. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools. Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335 [TBL] [Abstract][Full Text] [Related]
8. Developing guanine base editors for G-to-T editing in rice. Liu L; Zhang Z; Wang C; Yan F; Sun W; Zhou X; Miao W; Zhou H J Integr Plant Biol; 2024 Aug; 66(8):1557-1560. PubMed ID: 38934772 [TBL] [Abstract][Full Text] [Related]
9. Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Tran MTN; Khalid MKNM; Pébay A; Cook AL; Liang HH; Wong RCB; Craig JE; Liu GS; Hung SS; Hewitt AW Mol Vis; 2019; 25():174-182. PubMed ID: 30996586 [TBL] [Abstract][Full Text] [Related]
10. nCas9 Engineering for Improved Target Interaction Presents an Effective Strategy to Enhance Base Editing. Zhang G; Song Z; Huang S; Wang Y; Sun J; Qiao L; Li G; Feng Y; Han W; Tang J; Chen Y; Huang X; Liu F; Wang X; Liu J Adv Sci (Weinh); 2024 Aug; 11(31):e2405426. PubMed ID: 38881503 [TBL] [Abstract][Full Text] [Related]
11. Expanding C-T base editing toolkit with diversified cytidine deaminases. Cheng TL; Li S; Yuan B; Wang X; Zhou W; Qiu Z Nat Commun; 2019 Aug; 10(1):3612. PubMed ID: 31399578 [TBL] [Abstract][Full Text] [Related]
12. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Kurt IC; Zhou R; Iyer S; Garcia SP; Miller BR; Langner LM; Grünewald J; Joung JK Nat Biotechnol; 2021 Jan; 39(1):41-46. PubMed ID: 32690971 [TBL] [Abstract][Full Text] [Related]
13. Evolved cytidine and adenine base editors with high precision and minimized off-target activity by a continuous directed evolution system in mammalian cells. Zhao N; Zhou J; Tao T; Wang Q; Tang J; Li D; Gou S; Guan Z; Olajide JS; Lin J; Wang S; Li X; Zhou J; Gao Z; Wang G Nat Commun; 2024 Sep; 15(1):8140. PubMed ID: 39289397 [TBL] [Abstract][Full Text] [Related]
14. Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions. Chen S; Liu Z; Lai L; Li Z CRISPR J; 2022 Jun; 5(3):389-396. PubMed ID: 35238619 [TBL] [Abstract][Full Text] [Related]
15. Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Sakata RC; Ishiguro S; Mori H; Tanaka M; Tatsuno K; Ueda H; Yamamoto S; Seki M; Masuyama N; Nishida K; Nishimasu H; Arakawa K; Kondo A; Nureki O; Tomita M; Aburatani H; Yachie N Nat Biotechnol; 2020 Jul; 38(7):865-869. PubMed ID: 32483365 [TBL] [Abstract][Full Text] [Related]
16. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426 [TBL] [Abstract][Full Text] [Related]
17. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Kim N; Choi S; Kim S; Song M; Seo JH; Min S; Park J; Cho SR; Kim HH Nat Biotechnol; 2024 Mar; 42(3):484-497. PubMed ID: 37188916 [TBL] [Abstract][Full Text] [Related]
18. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Li C; Wang L; Cseke LJ; Vasconcelos F; Huguet-Tapia JC; Gassmann W; Pauwels L; White FF; Dong H; Yang B Commun Biol; 2023 Jan; 6(1):56. PubMed ID: 36646768 [TBL] [Abstract][Full Text] [Related]
19. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Chen L; Hong M; Luan C; Gao H; Ru G; Guo X; Zhang D; Zhang S; Li C; Wu J; Randolph PB; Sousa AA; Qu C; Zhu Y; Guan Y; Wang L; Liu M; Feng B; Song G; Liu DR; Li D Nat Biotechnol; 2024 Apr; 42(4):638-650. PubMed ID: 37322276 [TBL] [Abstract][Full Text] [Related]