BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38169251)

  • 1. Adaptable strategy for reactivation and recycling of spent S-Zorb adsorbents at the laboratory and pilot scale.
    Lyu Y; Wu Y; Sui X; Hu Y; Geng X; Fu J; Zhang X; Liu X
    J Environ Manage; 2024 Feb; 351():119993. PubMed ID: 38169251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-up reactivation of spent S-Zorb adsorbents for gasoline desulfurization.
    Lyu Y; Sun Z; Meng X; Wu Y; Liu X; Hu Y
    J Hazard Mater; 2022 Feb; 423(Pt A):126903. PubMed ID: 34461539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Adsorption Desulfurization of Fluid Catalytic Cracking Light Gasoline on NiO/ZnO-TiO
    Zhou G; Chen S; Jiang W; Li Q; Zhou H; Gong X; Zhang X
    ACS Omega; 2022 Apr; 7(13):11068-11074. PubMed ID: 35415346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics.
    Verbinnen B; Block C; Van Caneghem J; Vandecasteele C
    Waste Manag; 2015 Nov; 45():407-11. PubMed ID: 26174357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive adsorption desulfurization of NiO and Ni
    Ju F; Wang M; Luan H; Du P; Tang Z; Ling H
    RSC Adv; 2018 Sep; 8(58):33354-33360. PubMed ID: 35548157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites.
    Rui J; Liu F; Wang R; Lu Y; Yang X
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28218678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic resin-derived activated carbon-supported divalent metal as efficient adsorbents (M-C, M=Zn, Ni, or Cu) for dibenzothiophene removal.
    He C; Men G; Xu B; Cui J; Zhao J
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):782-794. PubMed ID: 27752957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The Application of X-Ray Photoelectron Spectroscopy on Refining Catalyst].
    Qiu LM; Xu GT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3514-8. PubMed ID: 26964241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling Spent Cr Adsorbents as Catalyst for Eliminating Methylmercaptan.
    He D; Zhang L; Zhao Y; Mei Y; Chen D; He S; Luo Y
    Environ Sci Technol; 2018 Mar; 52(6):3669-3675. PubMed ID: 29504400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-deep adsorptive desulfurization of a model diesel fuel on regenerable Ni-Cu/γ-Al₂O₃ at low temperatures in absence of hydrogen.
    Mansouri A; Khodadadi AA; Mortazavi Y
    J Hazard Mater; 2014 Apr; 271():120-30. PubMed ID: 24632365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of metal recovery from spent petroleum catalysts and ash.
    Akcil A; Vegliò F; Ferella F; Okudan MD; Tuncuk A
    Waste Manag; 2015 Nov; 45():420-33. PubMed ID: 26188611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel chelation-based recycling strategy for the efficient decontamination of hazardous petroleum refinery spent catalysts.
    Pathak A; Al-Sheeha H; Ali AA; Rana MS
    J Environ Manage; 2022 Nov; 322():116055. PubMed ID: 36041303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H
    Gupta NK; Bae J; Kim S; Kim KS
    Chemosphere; 2021 Jul; 274():129789. PubMed ID: 33545597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of polyethylene/Zn-ionic as a diesel fuel sulfur adsorbent: gamma radiation effect and response surface methodology.
    Zaki EG; Mohmed D; Hussein MF; El-Zayat MM; Soliman FS; Aman D
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):52993-53009. PubMed ID: 34023992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and recycle of wastewater contaminated with heavy metals using adsorbents incorporated from waste resources and nanomaterials-A review.
    S DS; Vishwakarma V
    Chemosphere; 2021 Jun; 273():129677. PubMed ID: 33503526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of ultra-low-sulfur gasoline: an equilibrium and kinetic analysis on adsorption of sulfur compounds over Ni/MMS sorbents.
    Subhan F; Liu BS; Zhang QL; Wang WS
    J Hazard Mater; 2012 Nov; 239-240():370-80. PubMed ID: 23022413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.