BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38169426)

  • 1. Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge.
    Lee GR; Flanders AE; Richards T; Kitamura F; Colak E; Lin HM; Ball RL; Talbott J; Prevedello LM
    Radiol Artif Intell; 2024 Jan; 6(1):e230256. PubMed ID: 38169426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures.
    Voter AF; Larson ME; Garrett JW; Yu JJ
    AJNR Am J Neuroradiol; 2021 Aug; 42(8):1550-1556. PubMed ID: 34117018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnostic accuracy of an artificial intelligence algorithm versus radiologists for fracture detection on cervical spine CT.
    van den Wittenboer GJ; van der Kolk BYM; Nijholt IM; Langius-Wiffen E; van Dijk RA; van Hasselt BAAM; Podlogar M; van den Brink WA; Bouma GJ; Schep NWL; Maas M; Boomsma MF
    Eur Radiol; 2024 Jan; ():. PubMed ID: 38206401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
    Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T
    JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground truth generalizability affects performance of the artificial intelligence model in automated vertebral fracture detection on plain lateral radiographs of the spine.
    Chou PH; Jou TH; Wu HH; Yao YC; Lin HH; Chang MC; Wang ST; Lu HH; Chen HH
    Spine J; 2022 Apr; 22(4):511-523. PubMed ID: 34737066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Machine Learning-Based Model for Accurate Detection and Classification of Cervical Spine Fractures Using CT Imaging.
    Riazi Esfahani P; Guirgus M; Maalouf M; Mazboudi P; Reddy AJ; Sarsour RO; Hassan SS
    Cureus; 2023 Oct; 15(10):e47328. PubMed ID: 38021776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What Are the Applications and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A Systematic Review.
    Langerhuizen DWG; Janssen SJ; Mallee WH; van den Bekerom MPJ; Ring D; Kerkhoffs GMMJ; Jaarsma RL; Doornberg JN
    Clin Orthop Relat Res; 2019 Nov; 477(11):2482-2491. PubMed ID: 31283727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis.
    Kuo RYL; Harrison C; Curran TA; Jones B; Freethy A; Cussons D; Stewart M; Collins GS; Furniss D
    Radiology; 2022 Jul; 304(1):50-62. PubMed ID: 35348381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning.
    Muehlematter UJ; Mannil M; Becker AS; Vokinger KN; Finkenstaedt T; Osterhoff G; Fischer MA; Guggenberger R
    Eur Radiol; 2019 May; 29(5):2207-2217. PubMed ID: 30519934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of artificial intelligence-aided reading in the detection of nasal bone fractures.
    Yang C; Yang L; Gao GD; Zong HQ; Gao D
    Technol Health Care; 2023; 31(3):1017-1025. PubMed ID: 36442167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Commercial AI Software Performance for Radiograph Lung Nodule Detection and Bone Age Prediction.
    van Leeuwen KG; Schalekamp S; Rutten MJCM; Huisman M; Schaefer-Prokop CM; de Rooij M; van Ginneken B; Maresch B; Geurts BHJ; van Dijke CF; Laupman-Koedam E; Hulleman EV; Verhoeff EL; Meys EMJ; Mohamed Hoesein FAA; Ter Brugge FM; van Hoorn F; van der Wel F; van den Berk IAH; Luyendijk JM; Meakin J; Habets J; Verbeke JIML; Nederend J; Meys KME; Deden LN; Langezaal LCM; Nasrollah M; Meij M; Boomsma MF; Vermeulen M; Vestering MM; Vijlbrief O; Algra P; Algra S; Bollen SM; Samson T; von Brucken Fock YHG;
    Radiology; 2024 Jan; 310(1):e230981. PubMed ID: 38193833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of an AI Aid in Detection of Adult Appendicular Skeletal Fractures by Emergency Physicians and Radiologists: A Multicenter Cross-sectional Diagnostic Study.
    Duron L; Ducarouge A; Gillibert A; Lainé J; Allouche C; Cherel N; Zhang Z; Nitche N; Lacave E; Pourchot A; Felter A; Lassalle L; Regnard NE; Feydy A
    Radiology; 2021 Jul; 300(1):120-129. PubMed ID: 33944629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cervical spine fracture detection in computed tomography using convolutional neural networks.
    Golla AK; Lorenz C; Buerger C; Lossau T; Klinder T; Mutze S; Arndt H; Spohn F; Mittmann M; Goelz L
    Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37167980
    [No Abstract]   [Full Text] [Related]  

  • 14. Artificial Intelligence for Hip Fracture Detection and Outcome Prediction: A Systematic Review and Meta-analysis.
    Lex JR; Di Michele J; Koucheki R; Pincus D; Whyne C; Ravi B
    JAMA Netw Open; 2023 Mar; 6(3):e233391. PubMed ID: 36930153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence.
    Guermazi A; Tannoury C; Kompel AJ; Murakami AM; Ducarouge A; Gillibert A; Li X; Tournier A; Lahoud Y; Jarraya M; Lacave E; Rahimi H; Pourchot A; Parisien RL; Merritt AC; Comeau D; Regnard NE; Hayashi D
    Radiology; 2022 Mar; 302(3):627-636. PubMed ID: 34931859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abdominal CT Body Composition Thresholds Using Automated AI Tools for Predicting 10-year Adverse Outcomes.
    Lee MH; Zea R; Garrett JW; Graffy PM; Summers RM; Pickhardt PJ
    Radiology; 2023 Feb; 306(2):e220574. PubMed ID: 36165792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards clinical implementation of an AI-algorithm for detection of cervical spine fractures on computed tomography.
    Ruitenbeek HC; Oei EHG; Schmahl BL; Bos EM; Verdonschot RJCG; Visser JJ
    Eur J Radiol; 2024 Apr; 173():111375. PubMed ID: 38377894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial Intelligence Applied to Osteoporosis: A Performance Comparison of Machine Learning Algorithms in Predicting Fragility Fractures From MRI Data.
    Ferizi U; Besser H; Hysi P; Jacobs J; Rajapakse CS; Chen C; Saha PK; Honig S; Chang G
    J Magn Reson Imaging; 2019 Apr; 49(4):1029-1038. PubMed ID: 30252971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Deep Learning Algorithm for Detecting Spinal Metastases on Computed Tomography Images.
    Motohashi M; Funauchi Y; Adachi T; Fujioka T; Otaka N; Kamiko Y; Okada T; Tateishi U; Okawa A; Yoshii T; Sato S
    Spine (Phila Pa 1976); 2024 Mar; 49(6):390-397. PubMed ID: 38084012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of an Artificial Intelligence-Based Platform Against Clinical Radiology Reports for the Evaluation of Noncontrast Chest CT.
    Yacoub B; Kabakus IM; Schoepf UJ; Giovagnoli VM; Fischer AM; Wichmann JL; Martinez JD; Sharma P; Rapaka S; Sahbaee P; Hoelzer P; Burt JR; Varga-Szemes A; Emrich T
    Acad Radiol; 2022 Feb; 29 Suppl 2():S108-S117. PubMed ID: 33714665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.