BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 38170356)

  • 1. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation.
    Bansal M; Santhiya D; Sharma JG
    Environ Sci Pollut Res Int; 2024 Feb; 31(6):8354-8368. PubMed ID: 38170356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships.
    Feng NX; Yu J; Zhao HM; Cheng YT; Mo CH; Cai QY; Li YW; Li H; Wong MH
    Sci Total Environ; 2017 Apr; 583():352-368. PubMed ID: 28117167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro- and nano-plastics pollution and its potential remediation pathway by phytoremediation.
    Gong X; Shi G; Zou D; Wu Z; Qin P; Yang Y; Hu X; Zhou L; Zhou Y
    Planta; 2023 Jan; 257(2):35. PubMed ID: 36624317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of microplastics in the process of laccase-assisted phytoremediation of phenanthrene-contaminated soil.
    Chen X; Zhu Y; Chen F; Li Z; Zhang X; Wang G; Ji J; Guan C
    Sci Total Environ; 2023 Dec; 905():167305. PubMed ID: 37742959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-bacteria partnerships for the remediation of persistent organic pollutants.
    Arslan M; Imran A; Khan QM; Afzal M
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4322-4336. PubMed ID: 26139403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A concept for the biotechnological minimizing of emerging plastics, micro- and nano-plastics pollutants from the environment: A review.
    Nguyen LH; Nguyen BS; Le DT; Alomar TS; AlMasoud N; Ghotekar S; Oza R; Raizada P; Singh P; Nguyen VH
    Environ Res; 2023 Jan; 216(Pt 1):114342. PubMed ID: 36181894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems.
    Kumar R; Verma A; Rakib MRJ; Gupta PK; Sharma P; Garg A; Girard P; Aminabhavi TM
    Sci Total Environ; 2023 Jan; 856(Pt 1):159097. PubMed ID: 36179840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro(nano)plastics: invisible compounds with a visible impact.
    Sharma P; Sharma P
    F1000Res; 2024; 13():69. PubMed ID: 38659492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment.
    Chaudhry Q; Blom-Zandstra M; Gupta S; Joner EJ
    Environ Sci Pollut Res Int; 2005; 12(1):34-48. PubMed ID: 15768739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability.
    Kumar D; Biswas JK; Mulla SI; Singh R; Shukla R; Ahanger MA; Shekhawat GS; Verma KK; Siddiqui MW; Seth CS
    Plant Physiol Biochem; 2024 Aug; 213():108795. PubMed ID: 38878390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources, impacts, factors affecting Cr uptake in plants, and mechanisms behind phytoremediation of Cr-contaminated soils.
    Ullah S; Liu Q; Wang S; Jan AU; Sharif HMA; Ditta A; Wang G; Cheng H
    Sci Total Environ; 2023 Nov; 899():165726. PubMed ID: 37495153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-transport of arsenic and micro/nano-plastics in saturated soil.
    Hao X; Sun H; Zhang Y; Li S; Yu Z
    Environ Res; 2023 Jul; 228():115871. PubMed ID: 37044167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake, translocation, and biological impacts of micro(nano)plastics in terrestrial plants: Progress and prospects.
    Wang W; Yuan W; Xu EG; Li L; Zhang H; Yang Y
    Environ Res; 2022 Jan; 203():111867. PubMed ID: 34389347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ phytoremediation of heavy metal-contaminated soil and groundwater: a green inventive approach.
    Shikha D; Singh PK
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4104-4124. PubMed ID: 33210252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of microplastics and arsenic on plants: Interactions, toxicity and environmental implications.
    Ivy N; Bhattacharya S; Dey S; Gupta K; Dey A; Sharma P
    Chemosphere; 2023 Oct; 338():139542. PubMed ID: 37474031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of polypropylene micro(nano)plastics on soil bacterial and fungal community assembly in saline-alkaline wetlands.
    Zhang L; Zhang G; Shi Z; He M; Ma D; Liu J
    Sci Total Environ; 2024 Oct; 945():173890. PubMed ID: 38885717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.
    Gong X; Huang D; Liu Y; Peng Z; Zeng G; Xu P; Cheng M; Wang R; Wan J
    Crit Rev Biotechnol; 2018 May; 38(3):455-468. PubMed ID: 28903604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-application of TiO
    Bakshi M; Kumar A
    J Environ Manage; 2023 Sep; 341():118005. PubMed ID: 37148761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Phytoremediation of heavy metal contamination and related molecular mechanisms in plants].
    Wang P; Chao D
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):426-435. PubMed ID: 32237537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.