These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38170473)

  • 1. Lean blowout detection using topological data analysis.
    Bhattacharya A; Mondal S; De S; Mukhopadhyay A; Sen S
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38170473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early detection of lean blowout using recurrence network for varying degrees of premixedness.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2022 Jun; 32(6):063105. PubMed ID: 35778125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of recurrence quantification analysis for early detection of lean blowout in a swirl-stabilized dump combustor.
    De S; Bhattacharya A; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2020 Apr; 30(4):043115. PubMed ID: 32357653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner.
    De Giorgi MG; Sciolti A; Campilongo S; Ficarella A
    Data Brief; 2016 Mar; 6():189-93. PubMed ID: 26862557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and control of combustion instability based on the concept of dynamical system theory.
    Gotoda H; Shinoda Y; Kobayashi M; Okuno Y; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022910. PubMed ID: 25353548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Idealized gas turbine combustor for performance research and validation of large eddy simulations.
    Williams TC; Schefer RW; Oefelein JC; Shaddix CR
    Rev Sci Instrum; 2007 Mar; 78(3):035114. PubMed ID: 17411224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting NOx Distribution in a Micro Rich-Quench-Lean Combustor Using a Variational Autoencoder.
    Yan P; Fan W; Zhang R
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imprints of log-periodicity in thermoacoustic systems close to lean blowout.
    Banerjee A; Pavithran I; Sujith RI
    Phys Rev E; 2023 Feb; 107(2-1):024219. PubMed ID: 36932584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-repetition-rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation.
    Wang S; Liu X; Wang G; Xu L; Li L; Liu Y; Huang Z; Qi F
    Appl Opt; 2019 Apr; 58(10):C68-C78. PubMed ID: 31045033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Pressure Fluctuation Characteristics of Central Swirl Combustors Based on Empirical Mode Decomposition.
    Wang X; Zhang X; Yang C; Li H; Liu Y
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35957179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Highly CO
    Habib MA; Haque MA; Nemitallah MA; Abdelhafez A; Khalifa AE
    ACS Omega; 2022 Nov; 7(45):41493-41507. PubMed ID: 36406490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development and performance of a perforated plate burner to produce vitiated flow with negligible swirl under engine-relevant gas turbine conditions.
    Rodrigues NS; Busari O; Senior WCB; McDonald CT; North AJ; Chen Y; Laster WR; Meyer SE; Lucht RP
    Rev Sci Instrum; 2019 Jul; 90(7):075107. PubMed ID: 31370480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emission Modeling of an Interturbine Burner Based on Flameless Combustion.
    Perpignan AAV; Talboom MG; Levy Y; Rao AG
    Energy Fuels; 2018 Jan; 32(1):822-838. PubMed ID: 29910533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor.
    Gotoda H; Amano M; Miyano T; Ikawa T; Maki K; Tachibana S
    Chaos; 2012 Dec; 22(4):043128. PubMed ID: 23278063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor.
    Barbosa S; Pilla G; Lacoste DA; Scouflaire P; Ducruix S; Laux CO; Veynante D
    Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2048):. PubMed ID: 26170424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Liner Metal Temperature of an Aeroengine Combustor with Multi-Physics Scale-Resolving CFD.
    Bertini D; Mazzei L; Andreini A
    Entropy (Basel); 2021 Jul; 23(7):. PubMed ID: 34356442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.
    England GC; Watson JG; Chow JC; Zielinska B; Chang MC; Loos KR; Hidy GM
    J Air Waste Manag Assoc; 2007 Jan; 57(1):79-93. PubMed ID: 17269233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic properties of combustion instability in a lean premixed gas-turbine combustor.
    Gotoda H; Nikimoto H; Miyano T; Tachibana S
    Chaos; 2011 Mar; 21(1):013124. PubMed ID: 21456838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual synchronization of two flame-driven thermoacoustic oscillators: Dissipative and time-delayed coupling effects.
    Moon K; Guan Y; Li LKB; Kim KT
    Chaos; 2020 Feb; 30(2):023110. PubMed ID: 32113251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.