These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. Wen J; Tao W; Hao S; Zu Y J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Meisel R N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107195 [No Abstract] [Full Text] [Related]
5. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Mehta J N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107196 [No Abstract] [Full Text] [Related]
6. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Reply. Frangoul H; Ho TW; Corbacioglu S N Engl J Med; 2021 Jun; 384(23):e91. PubMed ID: 34107197 [No Abstract] [Full Text] [Related]
15. Ji Luo Elucidates the CRISPR Gene Editing Technology, and How It May Affect Cancer Therapy in the Future. Luo J Oncology (Williston Park); 2016 Oct; 30(10):879. PubMed ID: 27753053 [No Abstract] [Full Text] [Related]
16. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges. Mout R; Ray M; Lee YW; Scaletti F; Rotello VM Bioconjug Chem; 2017 Apr; 28(4):880-884. PubMed ID: 28263568 [TBL] [Abstract][Full Text] [Related]
17. [CRISPR-Cas system as molecular scissors for gene therapy]. Heinz GA; Mashreghi MF Z Rheumatol; 2017 Feb; 76(1):46-49. PubMed ID: 28124743 [TBL] [Abstract][Full Text] [Related]