These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3817079)

  • 1. A behavioral and anatomical analysis of spinal cord injury produced by a feedback-controlled impaction device.
    Bresnahan JC; Beattie MS; Todd FD; Noyes DH
    Exp Neurol; 1987 Mar; 95(3):548-70. PubMed ID: 3817079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis.
    Behrmann DL; Bresnahan JC; Beattie MS; Shah BR
    J Neurotrauma; 1992; 9(3):197-217. PubMed ID: 1474608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of an electromechanical spinal cord injury device.
    Somerson SK; Stokes BT
    Exp Neurol; 1987 Apr; 96(1):82-96. PubMed ID: 3556519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traumatic spinal cord injury produced by controlled contusion in mouse.
    Jakeman LB; Guan Z; Wei P; Ponnappan R; Dzwonczyk R; Popovich PG; Stokes BT
    J Neurotrauma; 2000 Apr; 17(4):299-319. PubMed ID: 10776914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse.
    Ma M; Basso DM; Walters P; Stokes BT; Jakeman LB
    Exp Neurol; 2001 Jun; 169(2):239-54. PubMed ID: 11358439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury.
    Jalan D; Saini N; Zaidi M; Pallottie A; Elkabes S; Heary RF
    J Neurosurg Spine; 2017 Jan; 26(1):62-75. PubMed ID: 27636866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of an experimental spinal cord injury model using waveform and morphometric analysis.
    Falconer JC; Narayana PA; Bhattacharjee M; Liu SJ
    Spine (Phila Pa 1976); 1996 Jan; 21(1):104-12. PubMed ID: 9122750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of acute spinal cord injury in the rat: neuroprotection and enhanced recovery with methylprednisolone, U-74006F and YM-14673.
    Behrmann DL; Bresnahan JC; Beattie MS
    Exp Neurol; 1994 Mar; 126(1):61-75. PubMed ID: 8157127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental modeling of spinal cord injury: characterization of a force-defined injury device.
    Scheff SW; Rabchevsky AG; Fugaccia I; Main JA; Lumpp JE
    J Neurotrauma; 2003 Feb; 20(2):179-93. PubMed ID: 12675971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Models of spinal cord injury: Part 1. Static load technique.
    Black P; Markowitz RS; Cooper V; Mechanic A; Kushner H; Damjanov I; Finkelstein SD; Wachs KC
    Neurosurgery; 1986 Nov; 19(5):752-62. PubMed ID: 3785621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function.
    Shumsky JS; Tobias CA; Tumolo M; Long WD; Giszter SF; Murray M
    Exp Neurol; 2003 Nov; 184(1):114-30. PubMed ID: 14637085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue displacement and impact force are important contributors to outcome after spinal cord contusion injury.
    Ghasemlou N; Kerr BJ; David S
    Exp Neurol; 2005 Nov; 196(1):9-17. PubMed ID: 16023101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postmortem magnetic resonance imaging of experimental spinal cord injury: magnetic resonance findings versus in vivo functional deficit.
    Hackney DB; Finkelstein SD; Hand CM; Markowitz RS; Black P
    Neurosurgery; 1994 Dec; 35(6):1104-11. PubMed ID: 7885555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E
    J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of locomotor recovery following spinal cord contusion in adult rats.
    McEwen ML; Springer JE
    J Neurotrauma; 2006 Nov; 23(11):1632-53. PubMed ID: 17115910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of YM-14673, U-50488H, and nalmefene after spinal cord injury in the rat.
    Behrmann DL; Bresnahan JC; Beattie MS
    Exp Neurol; 1993 Feb; 119(2):258-67. PubMed ID: 8432363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.
    Basso DM; Beattie MS; Bresnahan JC
    Exp Neurol; 1996 Jun; 139(2):244-56. PubMed ID: 8654527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral and anatomical consequences of repetitive mild thoracic spinal cord contusion injury in the rat.
    Jin Y; Bouyer J; Haas C; Fischer I
    Exp Neurol; 2014 Jul; 257():57-69. PubMed ID: 24786492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between parameters of spinal cord impact and resultant injury.
    Noyes DH
    Exp Neurol; 1987 Mar; 95(3):535-47. PubMed ID: 3817078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.