These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38170902)

  • 1. Hydration deactivation mechanism of the 〈100〉 oriented cuprous oxide photocathodes in solar water splitting and the regenerated three-dimensional structure.
    Li Y; Wu J; Zheng Y; Fan Y; Bian T; Fan X; Masendu SV; Xu J; Shao Z
    Phys Chem Chem Phys; 2024 Jan; 26(3):1625-1629. PubMed ID: 38170902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Key Strategies on Cu
    Son MK
    Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38133039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting.
    Son MK; Pan L; Mayer MT; Hagfeldt A; Grätzel M; Luo J
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55080-55091. PubMed ID: 34761678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution-grown 3D Cu2O networks for efficient solar water splitting.
    Kargar A; Partokia SS; Niu MT; Allameh P; Yang M; May S; Cheung JS; Sun K; Xu K; Wang D
    Nanotechnology; 2014 May; 25(20):205401. PubMed ID: 24784802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the photovoltage of Cu
    Cheng J; Wu L; Luo J
    Nat Commun; 2023 Nov; 14(1):7228. PubMed ID: 37945577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction.
    Zhou X; Fu B; Li L; Tian Z; Xu X; Wu Z; Yang J; Zhang Z
    Nat Commun; 2022 Oct; 13(1):5770. PubMed ID: 36182949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical Enhancement of Cu
    Chang TK; Huang YS; Chen HY; Liao CN
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48540-48546. PubMed ID: 36206483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu
    Pan L; Liu Y; Yao L; Dan Ren ; Sivula K; Grätzel M; Hagfeldt A
    Nat Commun; 2020 Jan; 11(1):318. PubMed ID: 31949135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting.
    Luo J; Steier L; Son MK; Schreier M; Mayer MT; Grätzel M
    Nano Lett; 2016 Mar; 16(3):1848-57. PubMed ID: 26866762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Engineering of Cu
    Heo J; Bae H; Mane P; Burungale V; Seong C; Ha JS
    ACS Omega; 2023 Sep; 8(36):32794-32803. PubMed ID: 37720750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal orientation-dependent etching and trapping in thermally-oxidised Cu
    Niu W; Moehl T; Adams P; Zhang X; Lefèvre R; Cruz AM; Zeng P; Kunze K; Yang W; Tilley SD
    Energy Environ Sci; 2022 May; 15(5):2002-2010. PubMed ID: 35706422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformal Cu2S-coated Cu2O nanostructures grown by ion exchange reaction and their photoelectrochemical properties.
    Minguez-Bacho I; Courté M; Fan HJ; Fichou D
    Nanotechnology; 2015 May; 26(18):185401. PubMed ID: 25865464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photolysis stability of Cu
    Huang CL; Weng WL; Huang YS; Liao CN
    Nanoscale; 2019 Aug; 11(29):13709-13713. PubMed ID: 31194206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu
    Borgwardt M; Omelchenko ST; Favaro M; Plate P; Höhn C; Abou-Ras D; Schwarzburg K; van de Krol R; Atwater HA; Lewis NS; Eichberger R; Friedrich D
    Nat Commun; 2019 May; 10(1):2106. PubMed ID: 31068589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts.
    Morales-Guio CG; Liardet L; Mayer MT; Tilley SD; Grätzel M; Hu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):664-7. PubMed ID: 25403656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Binder-Free Supersonic Cold Spraying of Nanotextured Cupric Oxide (CuO) Films as Efficient Photocathodes.
    Lee JG; Kim DY; Lee JH; Kim MW; An S; Jo HS; Nervi C; Al-Deyab SS; Swihart MT; Yoon SS
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15406-14. PubMed ID: 27232695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cu
    Wang YC; Qin C; Lou ZR; Lu YF; Zhu LP
    Nanotechnology; 2019 Dec; 30(49):495407. PubMed ID: 31480028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem Si Micropillar Array Photocathodes with Conformal Copper Oxide and a Protection Layer by Pulsed Laser Deposition.
    Kunturu PP; Zachariadis C; Witczak L; Nguyen MD; Rijnders G; Huskens J
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41402-41414. PubMed ID: 31618576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction.
    Toe CY; Zheng Z; Wu H; Scott J; Amal R; Ng YH
    Angew Chem Int Ed Engl; 2018 Oct; 57(41):13613-13617. PubMed ID: 30133948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Robust Photoelectrochemical Operation of Cuprous Oxide Nanowire Photocathodes Using a Strategically Designed Solution-Processed Titanium Oxide Passivation Coating.
    Kim JS; Cho SW; Deshpande NG; Kim YB; Yun YD; Jung SH; Kim DS; Cho HK
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14840-14847. PubMed ID: 30938151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.