These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38171012)
1. Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation. Maruccio FC; Eppinga W; Laves MH; Navarro RF; Salvi M; Molinari F; Papaconstadopoulos P Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38171012 [No Abstract] [Full Text] [Related]
2. Automatic contouring of normal tissues with deep learning for preclinical radiation studies. Lappas G; Wolfs CJA; Staut N; Lieuwes NG; Biemans R; van Hoof SJ; Dubois LJ; Verhaegen F Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35061600 [No Abstract] [Full Text] [Related]
3. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
4. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
5. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process. Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216 [TBL] [Abstract][Full Text] [Related]
6. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Savenije MHF; Maspero M; Sikkes GG; van der Voort van Zyp JRN; T J Kotte AN; Bol GH; T van den Berg CA Radiat Oncol; 2020 May; 15(1):104. PubMed ID: 32393280 [TBL] [Abstract][Full Text] [Related]
7. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357 [TBL] [Abstract][Full Text] [Related]
8. Application of simultaneous uncertainty quantification for image segmentation with probabilistic deep learning: Performance benchmarking of oropharyngeal cancer target delineation as a use-case. Sahlsten J; Jaskari J; Wahid KA; Ahmed S; Glerean E; He R; Kann BH; Mäkitie A; Fuller CD; Naser MA; Kaski K medRxiv; 2023 Feb; ():. PubMed ID: 36865296 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-based detection of aberrant deep learning segmentations of target and organs at risk for prostate radiotherapy using a secondary segmentation algorithm. Claessens M; Vanreusel V; De Kerf G; Mollaert I; Löfman F; Gooding MJ; Brouwer C; Dirix P; Verellen D Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35561701 [No Abstract] [Full Text] [Related]
10. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573 [TBL] [Abstract][Full Text] [Related]
11. Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency. Trimpl MJ; Campbell S; Panakis N; Ajzensztejn D; Burke E; Ellis S; Johnstone P; Doyle E; Towers R; Higgins G; Bernard C; Hustinx R; Vallis KA; Stride EPJ; Gooding MJ Radiother Oncol; 2024 Nov; 200():110500. PubMed ID: 39236985 [TBL] [Abstract][Full Text] [Related]
12. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning. Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996 [TBL] [Abstract][Full Text] [Related]
13. Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis. Liu P; Sun Y; Zhao X; Yan Y Biomed Eng Online; 2023 Nov; 22(1):104. PubMed ID: 37915046 [TBL] [Abstract][Full Text] [Related]
14. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center. D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425 [TBL] [Abstract][Full Text] [Related]
15. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
16. Validation of a Fully Automated Hybrid Deep Learning Cardiac Substructure Segmentation Tool for Contouring and Dose Evaluation in Lung Cancer Radiotherapy. Chin V; Finnegan RN; Chlap P; Otton J; Haidar A; Holloway L; Thwaites DI; Dowling J; Delaney GP; Vinod SK Clin Oncol (R Coll Radiol); 2023 Jun; 35(6):370-381. PubMed ID: 36964031 [TBL] [Abstract][Full Text] [Related]
17. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384 [TBL] [Abstract][Full Text] [Related]
18. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231 [TBL] [Abstract][Full Text] [Related]
19. Uncertainty estimation for deep learning-based pectoral muscle segmentation via Monte Carlo dropout. Klanecek Z; Wagner T; Wang YK; Cockmartin L; Marshall N; Schott B; Deatsch A; Studen A; Hertl K; Jarm K; Krajc M; Vrhovec M; Bosmans H; Jeraj R Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37137317 [No Abstract] [Full Text] [Related]
20. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]