BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38171048)

  • 1. Toward rapid and efficient utilization of nonconventional substrates by nonconventional yeast strains.
    Koh HG; Yook S; Oh H; Rao CV; Jin YS
    Curr Opin Biotechnol; 2024 Feb; 85():103059. PubMed ID: 38171048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering xylose metabolism in yeasts to produce biofuels and chemicals.
    Lee JW; Yook S; Koh H; Rao CV; Jin YS
    Curr Opin Biotechnol; 2021 Feb; 67():15-25. PubMed ID: 33246131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae.
    Lane S; Dong J; Jin YS
    Bioresour Technol; 2018 Jul; 260():380-394. PubMed ID: 29655899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae.
    Sun L; Jin YS
    Biotechnol J; 2021 Apr; 16(4):e2000142. PubMed ID: 33135317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective.
    Kwak S; Jin YS
    Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.
    Kim SR; Skerker JM; Kang W; Lesmana A; Wei N; Arkin AP; Jin YS
    PLoS One; 2013; 8(2):e57048. PubMed ID: 23468911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.
    Kim SR; Park YC; Jin YS; Seo JH
    Biotechnol Adv; 2013 Nov; 31(6):851-61. PubMed ID: 23524005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering for improved microbial pentose fermentation.
    Fernandes S; Murray P
    Bioeng Bugs; 2010; 1(6):424-8. PubMed ID: 21468211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review.
    Sun T; Yu Y; Wang K; Ledesma-Amaro R; Ji XJ
    Bioresour Technol; 2021 Oct; 337():125484. PubMed ID: 34320765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of biofuels and chemicals from xylose using native and engineered yeast strains.
    Kwak S; Jo JH; Yun EJ; Jin YS; Seo JH
    Biotechnol Adv; 2019; 37(2):271-283. PubMed ID: 30553928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.
    Ko JK; Jung JH; Altpeter F; Kannan B; Kim HE; Kim KH; Alper HS; Um Y; Lee SM
    Bioresour Technol; 2018 May; 256():312-320. PubMed ID: 29455099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol.
    Park H; Jeong D; Shin M; Kwak S; Oh EJ; Ko JK; Kim SR
    Appl Microbiol Biotechnol; 2020 Apr; 104(8):3245-3252. PubMed ID: 32076775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.
    Ghosh A; Zhao H; Price ND
    PLoS One; 2011; 6(11):e27316. PubMed ID: 22076150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast.
    Wei N; Quarterman J; Kim SR; Cate JH; Jin YS
    Nat Commun; 2013; 4():2580. PubMed ID: 24105024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering and Evolution of Saccharomyces cerevisiae to Produce Biofuels and Chemicals.
    Turner TL; Kim H; Kong II; Liu JJ; Zhang GC; Jin YS
    Adv Biochem Eng Biotechnol; 2018; 162():175-215. PubMed ID: 27913828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering oleaginous yeast Yarrowia lipolytica for enhanced limonene production from xylose and lignocellulosic hydrolysate.
    Yao F; Liu SC; Wang DN; Liu ZJ; Hua Q; Wei LJ
    FEMS Yeast Res; 2020 Sep; 20(6):. PubMed ID: 32840573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.