BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38171048)

  • 21. Improvement in D-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering.
    Promdonkoy P; Mhuantong W; Champreda V; Tanapongpipat S; Runguphan W
    J Ind Microbiol Biotechnol; 2020 Jul; 47(6-7):497-510. PubMed ID: 32430798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae.
    Lee YG; Jin YS; Cha YL; Seo JH
    Bioresour Technol; 2017 Mar; 228():355-361. PubMed ID: 28088640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.
    Kim SR; Skerker JM; Kong II; Kim H; Maurer MJ; Zhang GC; Peng D; Wei N; Arkin AP; Jin YS
    Metab Eng; 2017 Mar; 40():176-185. PubMed ID: 28216106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cas9-Based Metabolic Engineering of
    Lee YG; Kim C; Kuanyshev N; Kang NK; Fatma Z; Wu ZY; Cheng MH; Singh V; Yoshikuni Y; Zhao H; Jin YS
    J Agric Food Chem; 2022 Sep; 70(38):12085-12094. PubMed ID: 36103687
    [No Abstract]   [Full Text] [Related]  

  • 25. Enhancing ethanol yields through d-xylose and l-arabinose co-fermentation after construction of a novel high efficient l-arabinose-fermenting Saccharomyces cerevisiae strain.
    Caballero A; Ramos JL
    Microbiology (Reading); 2017 Apr; 163(4):442-452. PubMed ID: 28443812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels.
    Kim B; Du J; Eriksen DT; Zhao H
    Appl Environ Microbiol; 2013 Feb; 79(3):931-41. PubMed ID: 23183982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain.
    Drzymała-Kapinos K; Mirończuk AM; Dobrowolski A
    Microb Cell Fact; 2022 Oct; 21(1):226. PubMed ID: 36307797
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals.
    Sànchez Nogué V; Karhumaa K
    Biotechnol Lett; 2015 Apr; 37(4):761-72. PubMed ID: 25522734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.
    Cunha JT; Romaní A; Costa CE; Sá-Correia I; Domingues L
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):159-175. PubMed ID: 30397768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.
    Hughes SR; López-Núñez JC; Jones MA; Moser BR; Cox EJ; Lindquist M; Galindo-Leva LA; Riaño-Herrera NM; Rodriguez-Valencia N; Gast F; Cedeño DL; Tasaki K; Brown RC; Darzins A; Brunner L
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8413-31. PubMed ID: 25204861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered yeast with a CO
    Li YJ; Wang MM; Chen YW; Wang M; Fan LH; Tan TW
    Sci Rep; 2017 Mar; 7():43875. PubMed ID: 28262754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation.
    Walker C; Dien B; Giannone RJ; Slininger P; Thompson SR; Trinh CT
    mSystems; 2021 Aug; 6(4):e0044321. PubMed ID: 34342539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.
    Matsushika A; Inoue H; Kodaki T; Sawayama S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):37-53. PubMed ID: 19572128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica.
    Ledesma-Amaro R; Nicaud JM
    Trends Biotechnol; 2016 Oct; 34(10):798-809. PubMed ID: 27207225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation.
    Chu BC; Lee H
    Biotechnol Adv; 2007; 25(5):425-41. PubMed ID: 17524590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass.
    Kim J; Hwang S; Lee SM
    Metab Eng; 2022 May; 71():2-12. PubMed ID: 34626808
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption.
    Scalcinati G; Otero JM; Van Vleet JR; Jeffries TW; Olsson L; Nielsen J
    FEMS Yeast Res; 2012 Aug; 12(5):582-97. PubMed ID: 22487265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.
    Wasylenko TM; Stephanopoulos G
    Biotechnol Bioeng; 2015 Mar; 112(3):470-83. PubMed ID: 25311863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae.
    Oh EJ; Skerker JM; Kim SR; Wei N; Turner TL; Maurer MJ; Arkin AP; Jin YS
    Appl Environ Microbiol; 2016 Jun; 82(12):3631-3639. PubMed ID: 27084006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.