These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38171128)

  • 21. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.
    Liang X; Ning XA; Chen G; Lin M; Liu J; Wang Y
    Ecotoxicol Environ Saf; 2013 Dec; 98():128-34. PubMed ID: 24094414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manufacture of Sustainable Clay Bricks Using Waste from Secondary Aluminum Recycling as Raw Material.
    Bonet-Martínez E; Pérez-Villarejo L; Eliche-Quesada D; Castro E
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy metal mobility in runoff water and absorption by eggplant fruits from sludge treated soil.
    Antonious GF; Turley ET; Sikora F; Snyder JC
    J Environ Sci Health B; 2008 Aug; 43(6):526-32. PubMed ID: 18665990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaching of heavy metals (Cu, Ni and Zn) and organic matter after sewage sludge application to Mediterranean forest soils.
    Toribio M; Romanyà J
    Sci Total Environ; 2006 Jun; 363(1-3):11-21. PubMed ID: 16316678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Availability of heavy metals to cabbage grown in sewage sludge amended calcareous soils under greenhouse conditions.
    Jalali M; Imanifard A
    Int J Phytoremediation; 2021; 23(14):1525-1537. PubMed ID: 33945349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk assessment and technical feasibility of usage of paper mill sludge biochar-based exhausted adsorbent for geopolymeric brick formation.
    Devi P; Saroha AK
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21641-21651. PubMed ID: 27522200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioassay directed identification of toxicants in sludge and related reused materials from industrial wastewater treatment plants in the Yangtze River Delta.
    Fang B; Guo J; Li F; Giesy JP; Wang L; Shi W
    Chemosphere; 2017 Feb; 168():191-198. PubMed ID: 27783959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks.
    Mohajerani A; Kadir AA; Larobina L
    Waste Manag; 2016 Jun; 52():228-44. PubMed ID: 26975623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental benefits of using sewage sludge in the production of ceramic bricks.
    Cangussu N; Vasconcelos L; Maia L
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):25344-25355. PubMed ID: 35041170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland-Case Study.
    Tytła M
    Int J Environ Res Public Health; 2019 Jul; 16(13):. PubMed ID: 31323916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Geotechnical properties of clayey soil improved by sewage sludge ash.
    Kadhim YM; Al-Adhamii RAJ; Fattah MY
    J Air Waste Manag Assoc; 2022 Jan; 72(1):34-47. PubMed ID: 33320778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Characteristics of Sludge and Associated Risk Assessment of Urban Sewage Treatment Plants].
    Li J; Li JX; Yang YY
    Huan Jing Ke Xue; 2021 Apr; 42(4):1956-1966. PubMed ID: 33742831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utilization of industrial wastes in non-sintered bricks: microstructure and environmental impacts.
    Shi D; Ma X; Zhao Y; Wang J; Xia Y; Liu M
    Environ Sci Pollut Res Int; 2024 Aug; ():. PubMed ID: 39098974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of industrial sludge particle size on the performance of baking-free sludge bricks.
    Tian Q; Zhao W; Guo L; Guo L; Li M
    J Air Waste Manag Assoc; 2023 Oct; 73(10):750-759. PubMed ID: 37729107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Valorization of pellets from municipal WWTP sludge in lightweight clay ceramics.
    Cusidó JA; Soriano C
    Waste Manag; 2011 Jun; 31(6):1372-80. PubMed ID: 21377858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of concentrate of membrane filtration of bleach plant effluent in brick production.
    Shukla SK; Kumar V; Mudgal M; Morchhale RK; Bansal MC
    J Hazard Mater; 2010 Dec; 184(1-3):585-590. PubMed ID: 20855155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.
    Alvarenga P; Mourinha C; Farto M; Santos T; Palma P; Sengo J; Morais MC; Cunha-Queda C
    Waste Manag; 2015 Jun; 40():44-52. PubMed ID: 25708406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks.
    Mohajerani A; Karabatak B
    Waste Manag; 2020 Apr; 107():252-265. PubMed ID: 32320938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reuse of waste sludge from water treatment plants and fly ash for manufacturing of adobe bricks.
    Minh Trang NT; Dao Ho NA; Babel S
    Chemosphere; 2021 Dec; 284():131367. PubMed ID: 34323781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.